Comprehensive Urbanized Area Stormwater Master Plan - Volume 2�:�....�
OKE:ECHOBEE COV NTY
CO��IPREHENSIVE URBANIZED
ARE�4 STO RMWATE R
MASTER PLAN
VOLUME II
.�O g.�
�
w
w �
�
O - - ��
.
\O R �U%
MAY 2007
�
.
CAS PROJECT No. 00-0903-146
PREPARED BY
�
Corporate o�ffice:
1000 W. McNalb Road
Pompano Beach„ FL 33069
Tel : (954) 782-8222
Branch Offices:
Wellington
Canal Point
1
_ �
REPORT
OF
WAl'ER QUALITY MODEL SIMULATION
IIN COOPERATION WITH CAS'S
OKEIECHOBEE COUNTY STORMWATER
MASTER PLAN PROJECT
OKEECHOBEE COUNTY, FLORIDA
ASMUSSEN ENGINEERING, LLC
P.O. Box 1998
Okeechobee, Florida 34973-1998
May 22, 2007
TABLE OF CONTENTS
Section
Page
1.0 Executive Summary ............................................................................ .....
2. 0 I ntrod u ct i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.0 Approach .............................................................................................
3.1 Model Selection ...........................................................................
3.2 Water Quality ............................................................................
4.0 Problem Areas ..............................................:................................... ...
4.1 Four Seasons ...........................................................................
4.2 Okeechobee Southwest Corridor ...................................................12
i
5.0 Data Available and Model Applicability .................................................... ...
2
6.0 Model Simulations .................................................................................
6.1 Four Seasons ............................................................................
6.1.1 Off-site areas ................................................................ ...
6.1.1.1 Off-site Sub-basins OA, OB, and OC .........................20
6.1.1.2 Off-site Sub-basins OD, OE, and OF ..........................21
6.1.2. On-site Sub-basins A thru K .... ...... ... ... ............ ......................24
6.1.3. Four Seasons Basin Summary ............................................28
6.1.4. Storm Flow for 1-, 2-, and 3-day Durations ............................28
6.1.5. Storm Flow 1-day Peak Discharge .......................................32
6.1.6. Alternate Agricultural Management Practice ..........................35
6.2 Okeechobee Southwest Corridor .....................................................37
6.2.1. Southwest Residential Area .................................... ........... 37
6.2.2. Southwest Corridor Model Simulations ................................ 38
6.2.3. Okeechobee Southwest Corridor Summaries ........................ 48
6.2.4. Okeechobee Southwest Corridor Storm Flow for 1-, 2-, and
3-day events ...................................................................51
6.2.5. Okeechobee Southwest Corridor Storm Flow Peak
DischargeRates .....................................:....................... 51
2
7.0 References ..........................................................................................
Appendix A. Fig�ares ...... ............ ... ......... .................................... ................
6
Appendix B. Tables ....................................................................................
7
AppendixC. Ma��s ......................................................................................
AppendixD. PIa1:es .....................................................................................87
,,..
3
1.0 EXECUTIVE SUMMARY
The GLEAMS model was used to simulate storm water discharge for Four Seasons and
Okeechobee Southwest Corridor problem areas in Okeechobee County, Florida. The
50-yr (1931-80) daily precipitation record from Avon Park, Florida was selected for
model applications since greater runoff events occurred during that period compared
with that for 1956-2005. The 75-yr (1931-2005) record was used for frequency
analyses to estimate 1-, 2-, and 3-day storm water discharge for 5-, 10-, 25-, 50-, and
100-yr recurrence intervals.
Model simulations were made for residential and agricultural land uses in Four Seasons
and Okeechobee Southwest Corridor problem areas. Average annual storm water,
return flow, and total stream flow were estimated to determine water volumes to be
considered in proposed storm water treatment areas (STA's) and/or drainage canals.
Total nitrogen and total phosphorus loads were determined for each sub-basin source in
the problem areas. Unit masses of each element were calculated at sub-basin outlets,
and estimates were made for losses in channel conveyance systems and STA's. These
estimates provide potential plant-nutrient loadings to Nubbin Slough, Mosquito Creek,
and Lemkin Creek.
Average-annual unit-area storm flow in Four Seasons ranged from 6.46 in/ac for
improved pasture to 9.65 in/ac for residential area. Average annual unit-area stream
flow (storm flow + return flow} ranged from 9.69 in/ac to 12.53 in/ac for the same land
uses. The 1-day 5-yr storm flow was 2.67 in/ac for improved pasture and the 100-yr
storm flow was 5.99 inlac. The 1-day storm flow for residential areas ranged from 3.08
to 6.37 in/ac for the 5-yr and 100-yr recurrence, respectively.
Average-annual unit-area total-nitrogen (TN) losses in storm flow at Four Seasons
ranged from 2.82 to .4.78 Ibs/ac while the unit area losses in stream flow ranged from
0
n
3.19 to 5.23 Ibs/,�c. Average annual unit area total phosphorus (TP) losses in storm
flow ranged from 0.08 to 2.56 Ibs/ac, and the losses in total stream flow was the same.
In the Okeechobee Southwest Corridor, average-annual unit-area storm flow ranged
from 5.89 in/ac for a basin with improved pasture sod farms to 12.87 in/ac for a
residential and municipal basin with relatively large impervious areas. The total stream
flow ranged from 8.48 to 15.12 in/ac for the same basins. The 1-day storm flow for the
agricultural basin was 2.51 in/ac for a 5-yr event and 5.52 in/ac for a 100-yr event. The
corresponding v��lues for the residential/municipal basin was 3.43 in/ac and 6.88 in/ac
for the 5-yr and 100-year events, respectively.
In the OkeechobE:e Southwest Corridor, average annual unit area losses of TN in storm
flow ranged from 2.05 to 4.29 Ibs/ac, while that for total stream flow ranged from 2.29-
8.05 Ibs/ac. TP losses ranged from 0.08 to 2.56 Ibs/ac for both storm flow and total
stream flow.
Reductions of TIU and TP in conveyance channels from literature were found to be
approximately 6Ci% and 15%, respectively. Reductions of TN and TP in wet detention
(STA's) were found to be 25% and 60% respectively. Total loads of TN and TP would
be 10,229 Ibs arid 4,195 Ibs, respectively, with channel losses of 6,137 Ibs of TN and
and 629 Ibs of TI' for flow from Four Seasons basins into existing and proposed STA's.
The estimated Ic�sses for wet detention in the STA's would be 1,023 Ibs for TN and
2,140 Ibs for TP. Thus, the estimated loads discharging from the STA's would be 3,069
Ibs of TN and 1,4�25 Ibs of TP. Similar conveyance reductions for off-site basins OD-OF
would be 689 Ib:� and 70 Ibs for TN and TP, respectively, resulting in estimated loads
entering Mosquit�o Creek would be 460 Ibs TN and 403 Ibs TP.
In the Okeechob��e Southwest Corridor, where all the drainage canal flow is proposed to
discharge into ��TA's or water management areas, the channel and wet detention
reductions result�ed in TN loads from 18,407 Ibs to 5,522 Ibs. Similar reductions for TP
reduced the total source loads from 3,827 lbs to 1,301 Ibs.
��
2.0 INTRODUCTION
HDR Engineering, Inc (2004) identified water quantity and water quality problems in and
around City of Okeechobee, Florida. Their report dealt primarily with administrative
matters and did not quantify the extent of storm water problems nor offer solutions to
identified problems.
One of the items of discussion in the HDR report was selection of a model for storm
water simulation. The report gave an overview of the WAM model (Bottcher, et al.,
2002) and gave no information on results of any model simulations substantive to the
County to alleviate problems of flooding and water quality.
Craig A. Smith & Associates entered into an agreement with Okeechobee County (CAS
Project No. 00-0903-146 to assemble data sets, assess storm water problems, and to
make recommendations to alleviate those problems consistent with SFWMD criteria for
improving water quantity and water quality to Lake Okeechobee.
This report is prepared for CAS's consideration of storm water model simulations on
which to make recommendations to Okeechobee County for remediation of existing
flooding and water quality problems in the subject areas.
3.0 APPROACH
It is physically and financially impossible to measure (monitor) runoff, stream flow, and
quality of all water discharged from farms, ranches, and urban areas. Further, it is
impossible to measure effects of changes in land use and treatment before changes
take place. Therefore, the only feasible way to estimate the effects a priori is through
use of computer models of physical processes based upon somewhat limited research
data. Those processes consist of pollutant carriers (runoff and sediment) and pollutant
loadings (plant nutrient and/or pesticide entrainment and delivery). It is essential to
�
_ assess both ele:ments in order to extrapolate research results to locations and
conditions beyor�d their site of collection. The carrier must be adequately assessed
befiore loadings c.an be evaluated.
3.1 Model Selec�tion
The USDA-ARS developed the CREAMS model (Knisel, 1980) to assess nonpoint
source pollution from agriculture and consider alternative management strategies to
reduce pollutant loads. CREAMS was primarily a surface response-model, i.e. runoff,
sediment yield, ��nd pesticide and plant nutrient runoff. Little attention was given to
leaching or for riigh water-table conditions. Neatwole, et al. (1987) extended model
applicability for F'lorida conditions with CREAMS-WT, which builds onto CREAMS and
has become a preferred model for SFWMD (South Florida Water Management District).
CREAMS-WT is .a principal component of the WAM model (Bottcher, 2002).
An integral com��onent of CREAMS and CREAMS-WT is a modification of the SCS
curve-number m��thod for estimating daily or storm runoff from storm rainfall (U.S. Soil
Conservation Se�rvice, 1972). Debo and Associates (2001) assembled the Georgia
storm water management manual with input from numerous consultants. The SCS
curve number ��rocedure was included in the technical handbook. This further
demonstrates the� wide acceptance of the procedure for estimating storm runoff.
In 1987, Leonard, et al (1987) revised CREAMS to extend its representation and
applicability for runoff, sediment yield, and pesticide loadings at the edge-of-field and
bottom-of-root-zc�ne, called GLEAMS. Knisel et al (1993) developed a comprehensive
plant nutrient c��mponent for GLEAMS for nitrogen and phosphorus cycling and
movement into, within, below, and off the soil surface. Soil representations input to
GLEAMS enables simulation of perched water tables above restrictive layers below the
root zone. Perched water tables that build up near or at the ground surface during the
rainy season cau�se significant direct surFace runoff. Runoff carries pollutant loads such
7
as nitrogen, phosphorus, and pesticides to drainage ditches and channels. Prolonged
(
drainage of excess soil water (perched water table) along the confining layer results in
longer-term sustained flow in the ditches and channels.
GLEAMS was developed to represent a wide range of agricultural management
scenarios such as animal waste application by spreading (or by deposition from animal
grazing), sod farming, multiple cropping, etc. Although GLEAMS was developed for
field-size source areas, it can be applied on several hundred acres. However, it should
be recognized that it does not allow attenuation or adsorption in channel delivery
systems. GLEAMS can simulate daily processes for 50-yr climatic records to evaluate
best management practices (BMP's) for field-size areas which enables long-term
probability analyses. Improved soil representations and process formulations in the
GLEAMS model made it more representative of management systems over the
CREAMS model.
Management practices are applied on individual fields or pastures or management
units. Some fertilizer application is made on a given pasture, and that pasture is grazed
at some specific intensity of livestock. Adjacent lands may be operated by different
managers and thus has difFerent response to rainfall. Yet these aggregate areas, or
basins, may discharge water and pollutant loads to the same drainage network and be
further transferred to some receiving body, i.e. stream, or pond or lake. The attenuation
of water and chemicals in transit through a delivery system further impacts the receiving
body. However, it must be realized that management is imposed on individual fields,
pastures, and residential areas.
3.2 Water Quality
Water quality emanating from agricultural, municipal, and residential areas has become I
a major problem in recent years. Pollutants entering Lake Okeechobee � is a primary �
concern for SFVVMD. Little attention has been given to nitrogen loadings to Lake
8
Okeechobee in the past, primarily because of the very transient nature of the nitrogen
species and the fact that relatively large nitrogen loadings to the lake occur annually
from rainfall. Ho�rvever, more concern is being generated because of intensive activities
and rapid growth, particularly residential areas.
Best managemeint practices (BMP's) are routinely considered for reductions of runoff
and phosphorus input to Lake Okeechobee. These BMP's include swales, channels,
wetlands, and detention/retention ponds which reduce pollutant loads beyond field
edges. The SFINMD (2005) incorporated these effects into their phosphorus budget
estimating procedure for permitting land-use changes in the contributing area to the
lake. Bottcher and Harper (2003) provided information on phosphorus removal
efficiency for se�veral agricultural BMP's which ranged from 2-70% and 25-70% for
urban BMP's.
Most investigations on nitrogen reduction by BMP's have occurred in urban areas rather
than from diffuse nonpoint agricultural systems. There have been some comparisons of
- nitrogen reductions for channels and wetlands, and for wet and dry retention/detention
storage areas.
Strassler et al. (1999) reported reductions of 11 % for total nitrogen (TN), 39% for
organic nitrogen (ON), 11 % for nitrate-nitrogen (NO3-N), and 3% for ammonia nitrogen
(NH3-N) in o.peri-channel flow from a 140-ac agricultural area in Maryland. Total
phosphorus (l"P;1 concentrations were reduced by 15%. These values varied from
storm-to-storm due, among other things, to "first flush" concentrations, especially for
phosphorus (Livingston, 1999). The first-flush effect into wet and dry detention storage
is dependent upcm residence time in the storage ranging from 24-72 hours.
Harper (1999) reported TKN (total Kjeldahl nitrogen) and TN reductions of 80-100% in
residential storm water for dry detention storage, and 91 % reduction in commercial
storm water flow for wet detention storage. TP reduction was 61 % for both residential
and commercial :�torm water.
0
Wotzka and Oberts (1988) reported 85% TN removal by detention basins compared
with 24% removal by wetlands. They further reported 78% and 36% removal of TP for
detention basins and wetlands, respectively. Schueler (1995) found 40% removal of TN
and 60% removal of TP for wet storm-water ponds and NO REMOVAL for TN or TP for
dry storm-water ponds.
TN and ON are the major nitrogen constituents in storm runoff from agricultural or
residential areas. Reduction values found in the literature appear to be in the range of
40-80% TN in grass-lined channels and dry detention/retention storage. Possibly 10-
35% nitrogen removal might be expected in wet storage.
In view of the above considerations, GLEAMS was considered appropriate for the
purposes of examining storm water quantity and quality from source areas. Nitrogen
and phosphorus reductions must be considered for BMP's in downstream delivery to
major streams and ultimately as loadings to Lake Okeechobee.
4.0 PROBLEM AREAS
There are two principal areas of concern for storm water in Okeechobee County under
the present contract. Flooding from storm runoff occurs on both areas: (1) Four
Seasons area located northeast of the City of Okeechobee and (2) Southwest Corridor
located southwest of the City of Okeechobee. Both areas are in the Bassinger-Myakka-
Immokalee soil association in Okeechobee County, Florida (U.S. Department of
Agriculture-Natural Resources Conservation Service, 2003). A map of the Okeechobee
County stormwater project area is shown in Appendix A, Figure 1(Rubio, 2007), which
shows the Four Seasons and Okeechobee Southwest Corridor problem areas. Sub-
basins within the problem areas are not clear in the figure, but more detail will be shown
in larger scale maps later in this report.
10
4.1 Four Seasons
Four Seasons is an un-platted non-engineered subdivision. Flooding in the area results
from a combinati��n of conditions and consequences. The flat topography, lack of well-
defined surFace clrainage with clogged channels, and high water table conditions during
the rainy season result in considerable local flooding. During the 1950's, development
of residences ori relatively large lots began when the mobile home industry started
booming. Construction of access roads continued over the years as the area grew, and
drainage system conveyance became inadequate. In some instances street and
driveway constr�iction completely disregarded natural drainage and prolonged water
ponding occurrecl with slow evaporation during the dry season as the only mechanism
for dissipation. As further un-restricted development took place, larger areas of
residences, outbuildings, barns, hard-surface or paved driveways and street paving
resulted in more impervious area contributing 98% of rainfall to runoff, thus further
increasing the flooding potential during the rainy season.
The low-density iresidential area in Four Seasons contains significant areas of pasture
land where homE:owners have horses and cows grazing the entire lot surrounding the
residence. Som�e property owners have dug ponds for livestock water supply and
created dams with outflow pipes of limited discharge capacity.
A well-designed ;�urFace water management system is the only feasible way to alleviate
flooding and to convey storm water to existing SFWMD canal systems. Peer
Consultants (20Ci5) proposed some alternative drainage in Four Seasons. However,
their proposal did not address the ultimate disposition of storm water, and did not
propose alleviatic►n of flooding.
There are significant challenges that must be addressed in order to accomplish the
necessary storm��water management. SurFace drainage systems must be constructed
to convey water in a non-harmful manner to off-site storm water treatment areas and
detention basins. After construction, maintenance of the system will be an additional
11
problem as there is not a Home Owners Association (HOA) with designated compliance
authority. Okeechobee County and/or SFWMD probably would have to provide
maintenance in order to be compliant with local and state regulations. All aspects of
these endeavors must involve complete and open communications among all parties. If
any entity—County, State, properly owners—are not in complete accord, the project
would be doomed to failure and the flooding problems would continue and worsen
indefinitely with continued building in the area. These challenges and considerations
are beyond the scope of this project which deals only with runoff volumes and rates,
and plant nutrient loads.
4.2 Okeechobee Southwest Corridor
The southwest corridor of the county (Appendix A, Figure 1) is a growing area and is
currently plagued with flooding. Although the flooding is primarily a problem of
insufficient storage, drainage canal size, and maintenance, subdivisions within this
corridor flood frequently because of inadequate tertiary drainage systems.
There are some agricultural areas discharging into the lower end of the drainage canal.
The dominant land use is improved cattle and horse pastures. A few sod farms exist in
the lower part of the Corridor. There are several active and inactive shell mines in the
lower area near Lemkin Creek. The inactive mines are currently water impoundments
which serve in water quality remediation.
5.0 DATA AVAILABLE AND MODEL APPLICABILITY
The U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), in
cooperation with the U.S. Geological Survey (USGS), the U.S. Department of
Agriculture-Natural Resources Conservation Service (USDA-NRCS), formerly U.S.
Department of Agriculture-Soil Conservation Service, and South Florida Water
12
Management Disirict (SFWMD), collected data for the upper Taylor Creek watershed in
Okeechobee Coianty from 1956 to 1975. The data collection included rainfall, stream
flow, and water t;�ble measurements. Data summaries and analyses were published in
1985 (Knisel, et ��I, 1985). Measured annual rainfall and stream flow for the upper 15.7
sq. mi. drainage area (W-3 designation) averaged 47.99 inches and 11.88 inches,
respectively, for �the 20-yr. record period. During the record period, land use included
considerable ares�s of improved pasture but consisted mainly of unimproved pasture.
In order to extrapolate to long-term rainfall data for probability analyses, two NOAA
cooperative-obse�rver locations were selected for examination. A short-term record at
nearby Ft. Drurri, Florida, and longer-term records at the more distant Avon Park,
Florida. Daily prE:cipitation data were available for Ft. Drum for the period 1957 to 1992
(Nicks, 1998). Precipitation data at Avon Park are available for the 75-yr period 1931-
2005 (Nicks, 1998; Zhang, 2006).
A GLEAMS simialation was made for the 1957-75 rainfall record at Ft. Drum and a
second simulation was made for the 1956-75 record at Avon Park. The simulations
were made for unimproved pasture land use for comparative purposes. Model
simulation result;� are compared with obse.rved data for Upper Taylor Creek watershed
W-3 in Table 1.
Runoff and perc��lation were not separately measured at the W-3 gaging station, and
model simulatior� results of the two components are added to be approximately
equivalent to tot<<I stream flow. It is recognized that some of the simulated percolation
moves to shallov�► groundwater and would not appear as stream flow in channels. Also,
it should be pointed out that observed rainfall is weighted from finro recording rain gages,
and areal rainfall is normally less than point rainfall. The comparisons indicate that
GLEAMS can be used to (1) represent large areas for water-balance calculations, and
(2) be representative with long-term climaticYecords within a climatic region.
13
The 1931-2005 precipitation record at Avon Park, Florida (state climatological station
08-0369, Appendix A, Figure 2) was examined for appropriateness of record for long-
term model simulation. There were several years available prior to 1931 (Nicks, 1998),
but there were many months and days with missing record hence the 75-yr period was
selected as the most usable.
Table 1. Observed and simulated runoff, percolation, and stream flow, Upper Taylor
Creek watershed W-3, 1956-75.
Location Precipitation Runoff Percolation Stream flow
(inches inches) (inches) inches
Observed
W-3 (1956-75 47.99 11.88
Simulated
with
Ft. Drum 50.52 7.36 2.85 10.21
rainfall
1957-75 �
Simulated
with �
Avon Park 54.32 9.10 2.86 11.96
rainfall
1956-75
A plot of cumulative annual observed rainfall (series 1) and cumulative mean annual
rainfall (series 2) is shown in Appendix A, Figure 3 and cumulative normalized
departures are shown in Figure 4.. The average was 52.23 inches for the 75-yr period.
Observed annual values were approximately normal during the first 18 years, but a
gradual departure continued until about year 30 (1961) when a strong departure
continued for about 50 years (�1980). Since about 1980, there has been another period
of 26 years with near normal annual rainfall. Similar results were found at Belle Glade,
Florida (08-0611), but average annual rainfall was greater than that at Avon Park.
The entire 75-yr record of daily rainfall was used with the GLEAMS model to simulate
long-term daily runoff, percolation, and nitrogen and phosphorus losses from improved
14
pasture for further frequency analyses. Since GLEAMS can only use a maximum of 50
years in one simulation run, two over-lapping periods were used: 1931-1980 and 1956-
2005. Runoff, pe:rcolation, and N and P losses were the same for over-lap years 1956-
1980. Average a�nnual precipitation for the 1931-80 period was approximately 2 inches
greater than for the 1956-2005 period.
Based upon these comparisons, the 1931-1980 record period was selected for all 50-yr
simulations used in this report. Furthermore, it appears that the climatic region is in a
drier than normal period since about 1960.
Design criteria are oftentimes based upon some selected storm duration and frequency,
or recurrence inte:rval. Long-term records are important in determining storm frequency.
In flatland hydrol�ogy, multiples of days may be significant for design information, such
as 1-day, 2-day, and 3-day durations. The 75-yr rainfall record at Avon Park, Florida
was analyzed for annual maximum 1-day, 2-day, and 3-day rainfall amounts.
These 75-yr ann�aal maximum for each duration were fitted with a computerized Gumbel
extreme-value procedure (Potter, 1949) to estimate the 5-, 10-, 25-, 50-, and 100-yr
events for each duration. Results of the frequency analyses are given in Table 2.
Table 2. Result:� of frequency analyses for 1-, 2-, and 3-day annual maximum rainfall,
Avon Park, Florida, 1931-2005.
Recurrence Interval, ears
Duration 5� ears 10 ears 25 ears 50 ears 100 ears
Depth, inches
1-da 4.89 5.67 6.93 7.80 8.66
2-da 5.82 6.69 8.07 9.03 9.98
3-da 6.57 7.51 9.00 10.04 11.06
The data in Table 2 reveal that little additional rainfall occurs on the 2"d and 3�d days
following the anrival maximum 1-day storm. This indicates that hurricane-associated
15
rainfall is generally over on the day after maximum rainfall, i.e. most hurricanes pass in
�
1-day's time. Even extreme events for 50- and 100-year occurrences are not vastly
greater than the 5-year rainfall. The 75-year simulation should be representative of
longer-term precipitation.
6.0 MODEL SIMULATIONS
GLEAMS model simulations were made to obtain unit area runoff and percolation, and
nitrogen and phosphorus losses. The unit area data were used to accumulate storm
and annual discharge volumes and loads of N and P leaving respective areas.
6.1 FOUR SEASONS
The Four Seasons problem area consists of two parts: (1) off-site, primarily agricultural
area, and (2) on-site, primarily residential area. Some of the residential sub-basins
include significant amounts of improved and/or un-improved pasture. The residential
area consists of low- to medium-density residences on moderate size lots. Most
households have -animals, generally horses or cows, that graze pasture areas
surrounding the residences.
Off-site sub-basins OA, OB, and OC are primarily improved pasture areas with drainage
outside the residential area. Drainage from OB currently enters the channel system into
on-site sub-basin A, but re-routing through sub-basin OC is proposed. These sub-
basins are grouped in the analyses for convenience of the report users.
Sub-basins OD, OE, and OF drain into delivery channels outside the residential areas
and outside the delivery to a proposed Storm Treatment Area (STA). Basins OE and
OF are cattle pastures, mainly improved, although OE contains a significant amount of
un-improved pasture. Sub-basin OD is primarily a medium-density residential area with
16
significant amourits of improved and un-improved pastures. These three sub-basins are
also grouped in this report for users' convenience.
Maps of the Fo�ur Seasons are shown in Appendix C. Map 1 shows sub-division
delineations witf i topography superimposed with 5-ft contours showing a general
southwesterly dr;ainage pattern. Table 3 shows all sub-basins in Four Seasons with
their respective revised areas determined by Williams (2007). The most significant
revision was the ,�rea of sub-basin OA.
Table 3. Four Se�asons sub-basins and drainage areas.
Ba:�in Name Area, Acres
A 215
B 120
C 62
CC 12
D 79
E 141
F 146
G 67
H 120
I 103
J 39
JJ 3.6
K 66
, OA 235
OB 270
OC 686
OD 99
OE 109
OF 49
Total 2,621.6
17
Soils data from the Okeechobee County soil survey (USDA-NRCS, 2003) is
f
superimposed on the sub-basin delineation in map 2 of Appendix C. As stated earlier,
NRCS groups the soils into the Bassinger-Myakka-Immokalee soil association.
Map 3 shows land use for Four Seasons. This map distinguishes the different
residential area breakdowns. Land cover from 2006 aerial photos (Williams, 2007) is
shown on map 4 in Appendix C. The cover map was used to estimate relative
percentages of residential area, improved pasture, and un-improved pasture within sub-
basins. These percentages were used to estimate SCS curve numbers (USDA-SCS,
1972) for use in GLEAMS model applications. The curve numbers are not given in
Table 3 since the procedure incorporated in the model is an adaptation to estimate
maximum soil water storage. This is significantly different from the original procedure
used for design storm purposes (USDA-SCS, 1972; Debo, et al., 2003).
6.1.1 Model Simulations for Offsite Areas
As stated earlier, GLEAMS assumes uniform rainfall, uniform soil, uniform water
retention and saturated conductivity, uniform N& P content, and uniform fertilizer and
manure applications over the "field". From these assumptions, a uniform depth of
runoff, percolation, and N& P losses are simulated. Thus, unit depth of runoff (inches),
unit depth of percolation (inches), and unit losses of N& P(Ibs/ac ) were simulated. In
this manner, size of area is important only when total volume of runoff and percolation
and total mass of N and P are calculated for a drainage area.
The major pathways of plant nutrient losses are demonstrated in Table 4. Nitrogen
species (ammonia and nitrate) move in the solution phase in runoff and in percolation,
whereas phosphorus moves mainly in the adsorbed phase with the clay fraction in
sediment and as solution P in runoff. Percolation over the 50-yr simulation period was
approximately half the average runoff depth.
18
During the 1931-80 simulation period, annual precipitation ranged from 34.86 inches in
1955 to 79.63 inches in 1959. However, rainfall distribution within the year is
sometimes more dominating for runoff production. For example, in 1955, simulated
runoff was 2.20 inches compared with the least annual value of 1.67 inches when
annual rainfall w�as 37.12 inches. Likewise, maximum simulated annual runoff was
19.60 inches in 1948 when annual precipitation was 70.39 inches compared with 18.20
inches of runoff :�imulated in 1959 when the maximum annual rainfall occurred. There
were 4 years frorn 1948 through 1959 when annual rainfall was greater than 70 inches,
and simulated ruinoff ranged from 9.06 inches to 19.60 inches.
These facets iridicate why it is necessary to use long-term rainfall for model
applications. Sinnply put, the driest and wettest years would not be the best selections.
This is further complicated for plant nutrients or pesticide simulations. The determining
factor is when runoff-producing rains occur relative to application dates of fertilizer and
pesticides.
Since percolatior� below the root zone mainly returns to stream flow, its movement to
regional ground�Nater is essentially negligible. Therefore, the sum of runoff and
percolation is eq;uivalent to total stream flow. Volumes of runoff and percolation are
added in Table 4, and the respective components of nitrogen and phosphorus are
summed in the t��ble as well.
The equivalent ��tream flow masses of nitrogen and phosphorus losses were used to
estimate stream flow concentrations of N and P. These values represent source mass
and concentrations of N and P without attenuation. They are greater than the values
reported by �HDF: (2004) using the WAM model for improved pasture. The difference
befinreen these results and those of WAM probably result from initial values, climate,
grazing intensity, estimated manure production, and manure characteristics. This is not
intended to indicate that either modeling procedure is right or wrong, but merely
indicates difFerences among model applications.
19
Table 4. The 50-yr average-annual unit precipitation, simulated runoff, percolation,
stream flow, and nitrogen and phosphorus losses for Four Seasons off-site improved
pasture area, OA.
�COMFONENT = ;� � � UNIT DEPTH,MASS,
, . . - ,:. .;
CONCENTRATIQNS�UNITS:__,_��
.�._ _.. ... ,: _..._.._. _._.. . : �.._.�: - __��_.�___.._..�
Precipitation _ 53.08 inches
Runoff Storm flow 6.46 inches
Percolation Return Flow 3.23 inches
Stream flow Storm flow + Return flow 9.69 inches
Nitrogen in runoff + sediment �
Mass 2.88 Ibs/ac
Concentration 1.97 mg/L
Nitrogen leached
Mass 1.88 Ibs/ac
Concentration 2.57 m /L
Nitrogen runoff + sediment + leached
Mass 4.76 Ibs/ac
Concentration 2.17 mg/L
Phosphorus �in runoff + sediment
Mass . 2.36 Ibs/ac
Concentration 1.61 m�/L
Phosphorus leached
Mass <0.01 Ibs/ac
Concentration 0.01 m /L
Phosphorus runoff + sediment +
leached
Mass 2.36 Ibs/ac
Concentration 1.08 m /L
6.1.1.1. Off-Site Sub-basins OA, OB, and OC
Under the proposed plan, drainage of sub-basin OA will be improved with a larger
culvert under SR 70. Flow from OA will combine with discharge frorn sub-basin OB to
pass through a culvert under N.E. 12th Lane. Flow would further combine with that of
sub-basin OC to a pfoposed bypass weir at N.E. 80th Ave. and Center St. A drainage
canal/channel would be constructed south along side N.E. 80th Ave. to S.E. 8th St.
Further conveyance of storm flow would continue to the Nubbin Slough STA.
20
Total drainage o�f the three sub-basins OA, OB, and OC is 1,191 acres. Storm runoff
volumes, stream flow volumes, and plant nutrient loads are given for these sub-basins.
The land use for all three sub-basins is improved pasture.
Unit area data frc�m Table 4 were used to calculate the sub-basin volumes of storm flow
and total stream flow with their respective nutrient loads for the three offsite sub-basins.
Totals for the thrE:e off-site basins are given in Table 5.
Total simulated ;stream flow volumes and loads are accumulated for sub-basins OA,
OB, and OC at tlie lowest point, i.e. at the bypass weir at N.E. 80t" Ave and Center St.
Beyond that point in the proposed drainage canal to the STA, reduction of loads of total
phosphorus (TP) would be 15% as recommended by the SFWMD (2005) for swales and
channel BMP's. In accordance with literature values for reduction of total nitrogen (TN)
(Sec. 3.2 above), a conservative estimate of 60% loss in the drainage canal was used.
When the stream flow reaches the STA, the total N load would be estimated as 2,271
Ibs and the total P load would be estimated as 2,570 Ibs. These estimated loads
reaching the ST�� could be less because of flow in the drainage canal from the bypass
weir.
Estimated losses; of N and P in wet detention storage, such as the STA, are estimated
as 25% and 60%�, respectively. Thus, annual stream flow loads leaving the STA would
be estimated as approximately 1,703 Ibs for TN and 1,030 Ibs for TP entering the
Nubbin Slough-Nlosquito Creek interceptor canal.
6.1.1.2. Off-site: Sub-basins OD, OE, and OF
Storm water dr�inage from Four Seasons off-site sub-basins OD, OE, and OF
discharge into a Mosquito Creek tributary channel. The combined flow enters the
tributary channel below a proposed wet detention pond. Therefore, these sub-basins
21
were grouped for user convenience even though there is not a proposed retention basin
or STA at the present time.
Table 5. Simulated annual storm flow, return flow, and total stream flow volumes, and
plant nutrient loads for ofF site sub-basins OA, OB, and OC.
Sub-basin Basin
OA O B OC Total
Area, acres 235 270 686 1,191
Storm flow
In/ac 6.46 6.46 6.46 6.46
Ac-ft 126.51 145.35 369.30 641.16
Return flow
In/ac 3.23 3.23 3.23 3.23
Ac-ft 63.25 72.68 184.65 320.58
Stream flow
In/ac 9.69 9.69 9.69 9.69
Ac-ft 189.76 218.02 553.94 961.73
Nitro en
Storm flow
Ibs/ac 2.88 2.86 2.90 2.88
Ibs 676.80 772.20 1,989.40 3,438.40
Return flow
Ibs/ac 1.88 1.88 1.88 1.88
Ibs 441.80 507.60 1,289.68 2,239.08
Stream flow
Ibs/ac 4.76 4.74 4.78 4.76
Lbs 1,118.60 1,279.80 3,279.08 5,677.48
Phos horus
Storm flow
Ibs/ac 2.36 2.54 2.56 2.53
Ibs 554.60 685.80 1,776.74 3,016.84
Return flow
Ibs/ac <0.01 <0.01 <0.01 <0.01
Ibs 1.20 1.35 3.43 5.96
Stream flow
Ibs/ac 2.36 2.54 2.56 2.53
Ibs 555.80 687.15 1,780.17 3,023.12
,►T
22
The 50-yr GLEAAIIS model simulation results for the basins are summarized in Table 6.
Data in Table 6 ir�clude flow volumes and N and P loads and concentrations. Combined
volumes, loads, and concentrations are given in the table as well.
Table 6. SimulatE:d annual storm flow, return flow and total stream flow volumes, and
plant nutrient loacis for Four Seasons off-site sub-basins OD, OE, and OF.
Sub-basin
OD OE OF
Residential + Improved Improved Basin
Pasture Pasture Pasture Total
Area, acres 99 109 49 257
Storm flow
in/ac 8.26 7.23 6.46 7.44
ac-ft 68.14 65.67 26.38 160.19
Return flow
in/ac 3.04 3.15 3.23 3.12
ac-ft 25.08 28.61 13.19 66.88
Stream flow
in/ac 11.30 10.38 9.69 10.60
ac-ft 93.22 94.29 39.57 227.08
Nitro en
Storm flow
Ibs/ac 3.17 3.24 2.82 3.14
Ibs 315.81 353.16 138.19 807.16
Return flow
Ibs/ac 1.19 1.27 1.73 1.33
Ibs 118.21 138.64 84.73 341.58
Stream flow
Ibs/ac 4.36 4.51 4.55 4.47
Ibs 47124 491.80 222.92 1,148.74
Phos horus
Storm flow
Ibs/ac 1.33 2.07 2.35 1.84
Ibs 131.67 225.63 115.15 472.45
Return flow
Ibs/ac <0.01 <0.01 <0.01 <0.01
Ibs 0.40 0.44 0.20 1.04
Stream flow
Ibs/ac 1.33 2.07 2.35 1.84
Ibs 132.07 226.07 115.35 473.49
23
The model-simulated average-annual total nitrogen and total phosphorus for the three
sub-basins is 1,149 Ibs and 474 Ibs, respectively. Using the same percentage
conveyance losses as for sub-basins OA-OC and A thru K(60% reduction for TN and
15°/a reduction for TP), the estimated loads into Mosquito Creek would be 460 Ibs TN
and 403 Ibs TP. These values are conservative estimates for use with a potential
retention/detention basin or STA. Since outflow from the proposed wet detention basin
in sub-basin J flows through the channel system in sub-basin OE, that outFlow load of
TN and TP would add to the reduced load from sub-basins OD, OE, and OF.
6.1.2 On-site Sub-basins A thru K
All on-site sub-basins in Four Seasons except sub-basins "J" and "JJ" have varying
amounts of residential areas and both improved and un-improved pasture as seen in
the 2006-based cover map (Williams, 2007). Sub-basins "J" and "JJ" are basically un-
improved pasture.
Much of the residential area consists of closely-spaced
(manufactured) homes. Development of the subdivision
houses including mobile
began in the 1950's on
relatively large lots. Homeowners wanted large lots where they could have animals,
mainly horses. The homes were closely spaced near the county roadways. In essence,
the building area represented a medium density residential with carports, storage
buildings, horse shelters (one horse per lot), and other outbuildings. Driveways into
individual residences were generally hard surface (shell or gravel) although some were
paved.
The residences are all on individual septic systems. Due to high water table conditions
in the rainy season, septic tanks and drain fields were mounded to provide adequate
septage drainage. Ponds were generally dug with borrow material used for the septic-
system mounds.
24
A representative area was selected for GLEAMS simulations. One horse was assumed
for each residenl:ial lot as for the improved pasture simulation. In addition to monthly
application of hc►rse manure, septage from each household was also applied on a
monthly basis u��ing nitrogen and phosphorus contents from the USDA-NRCS animal
waste handbook (Barth, et al., 1992). Since an adaptation of the SCS curve number
method (US Soil Conservation Service, 1972) is used in GLEAMS, a procedure was
used for estimating a weighted curve number as given in the Georgia Stormwater
Handbook (Debo and Associates, 2001.) A weighted curve number for the residential
area was estimated by factoring in the impervious area and improved pasture. It should
be remembered that the Myakka-Bassinger-Immokalee soil association without
drainage perf'orm�s as a hydrologic soil group "D" (least permeable due to high water
table), whereas in a drained condition, it responds to rainfall as hydrologic soil group A
(USDA, 2003), i.e:. most permeable.
The average hoiasehold size for Okeechobee County, 2.68 residents per household
(SFWMD, 2005) was used with the average annual discharge of 16,425 gallons per
capita (Otis et al., 1993). As with animal waste, septage was applied in the model
monthly to sim��lify the parameter file. Effluent disposal (injection in GLEAMS
application) varie:s from residence to residence, and generalizations were made to
represent the diff�erent sub-basins. Hopefully these generalizations are appropriate and
give reasonable rnodel simulation results.
Results of the 50-yr model simulations for sub-basins A thru K are summarized in
Tables 7a and 7'b. Average-annual storm flow, return flow, and stream flow volumes
are given in the t�able as well as average annual nitrogen and phosphorus loadings and
concentrations. The data are presented for each sub-basin individually for user
convenience.
Sub-basin groupings for on-site and off-site sub-basins will be given in a later section.
Also, summary results of simulation are given for all Four Seasons sub-basins in
appendix B, Tabl�� B-1.
25
Table 7a. Simulated storm flow, return flow, and stream flow volumes, and plant
nutrient loads for Four Seasons sub-basins A thru F.
Sub-basin
q B C CC D E F
Area, ac. 215 120 62 12 79 141 146
Storm flow
in/ac 7.23 8.26 7.71 9.65 8.90 7.71 7.71
ac-ft 129.54 83.28 39.84 9.65 58.59 90.59 93.80
Return flow
in/ac 3.45 3.04 3.10 2.88 2.96 3.10 3.10
ac-ft 56.44 30.65 16.02 2.88 19.49 36.42 37.72
Stream flow
in/ac 10.38 11.30 10.81 12.53 11.86 10.81 10.81
ac-ft 185.48 113.94 55.85 12.53 78.08 127.02 131.52
Nitrogen
Storm flow
Ibs/ac 2.88 2.87 2.86 3.51 3.32 3.09 4.78
Ibs 618.32 344.91 177.15 42.12 262.28 435.69 697.25
Retum flow
Ibs/ac 0.74 1.47 0.33 0.15 0.36 0.94 0.45
Ibs 150.33 176.49 20.38 1.80 28.16 132.69 65.20
Stream flow
Ibs/ac 3.62 4.34 3.19 3.66 3.68 4.03 523
Ibs 776.65 521.40 199.53 43.92 290.44 568.38 762.45
Phosphorus
Storm flow
Ibs/ac 1.03 1;.73 0.35 0.14 0.76 1.52 1.05
Ibs 221.45 207.60 21.70 1.68 60.04 214.32 153.30
Retum flow
Ibs/ac
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Ibs 0.86 0.48 0.25 0.05 0.32 0.56 0.58
Stream flow
Ibs/ac 1.03 1.73 .0.35 0.14 0.76 1.52 1.05
Ibs 222.31 208.08 21.95 1.73 60.36 214.88 153.88
�
Table 7b. Simulated storm flow, return flow, and stream flow volumes, and plant
nutrient loads for Four Seasons sub-basins G thru K and basin total.
Sub-basin A - K
G H I J JJ K Total
Area, ac. 67 120 103 39 3.6 66 1,173.6
Storm flow
in/ac 7.71 8.90 7.71 7.71 7.71 8.90 7.97
ac-ft 43.O:i 89.00 66.18 25.06 2.31 48.95 779.84
Return flow
in/ac 3.10 2.96 3.10 3.10 3.10 2.97 3.07
ac-ft 17.3'I 29.60 26.61 10.08 0.93 16.34 300.49
Stream flow
in/ac 10.8�1 12.86 10.81 10.81 10.81 11.87 11.01
ac-ft 57.5Ei 118.60 92.79 35.13 3.24 65.29 1,077.03
Nitrogen
Storm flow
Ibs/ac 3.07' 3.19 3.04 3.05 3.06 3.19 3.24
Ibs 205.E�9 368.40 313.12 118.95 11.01 210.54 3,805.43
Return flow
Ibs/ac 0.68'� 0.14 0.76 0.26 0.26 0.14 0.64
Ibs 45.6!3 16.54 78.10 10.15 0.93 9.12 745.58
Stream flow
Ibs/ac 3.7:� 3.33 3.80 3.31 3.32 3.33 3.88
Ibs 251.��8 384.94 391.22 129.10 11.94 219.66 4,551.01
Phosphorus
Storm flow
Ibs/ac 1.51 0.08 1.34 0.77 0.77 0.08 0.99
Ibs 101.17 9.60 138.02 30.03 2.77 5.28 1,166.96
Retum flow
Ibs/ac
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Ibs 0.2 i' 0.48 0.41 0.16 0.01 0.26 4.69
Stream flow
Ibs/ac 1.5'I 0.08 1.34 0.77 0.77 0.08 0.99
Ibs 101.�44 10.08 138.43 30.19 2.78 5.54 1,171.65
27
In accordance with the procedure used in section 6.1.1.1 for sub-basins OA, OB, and
r
OC, corresponding reductions in TN and TP were estimated for sub-basins A through K.
Reductions of TN and TP in the channel conveyance system from the uppermost sub-
basin A to the proposed wet detention pond in sub-basin J would be 60% and 15%,
respectively. Thus, the reduction of TN would be 3,407 Ibs with 2,271 Ibs entering the
wet detention basin annually. The reduction of TP would be 176 Ibs with 996 Ibs
entering the wet detention basin annually. Further reduction in the wet detention basin,
25% for TN and 60% for TP, would reduce wet detention basin outflow to 1,704 Ibs TN
and 400 Ibs TP. Thus the total reduction of TN for the conveyance system and wet
detention basin would be approximately 3,974 Ibs and a total reduction of 772 Ibs for
TP.
6.1.3. Four Seasons Basin Summary
Average annual discharge and nutrient loadings for the three sub-basin groups are
summarized in Table 8. This table provides a reference for sub-basin groupings in the
Four Seasons area (also, see Appendix B, Table B-1).
6.1.4. Storm Flow for 1-, 2-, and 3-day Durations
Two overlapping 50-yr simulations were made with GLEAMS for each sub-basin in the
Four Seasons area. The 75-yr Avon Park rainfall record was partitioned into the 1931-
80 and 1956-2005. Simulation results for the two periods were combined for the total
record period. Annual maximum 1-, 2-, and 3-day rainfall depths were determined for
the 75-yr record period, 1931-2005. A computerized Gumbel extreme-value procedure
(Potter, 1949) was used to fit annual maxima data. The fitted data were used to
calculate the 5-, 10-, 25-, 50-, and 100-yr storm depths for each duration. Fitted data
are shown in Appendix A Figure 5.
28
Annual maximurn 1-, 2-, and 3-day runoff depths (storm flow) were determined for each
sub-basin in Foiar Seasons to provide a relatively long-term record for frequency
analysis. The d�ata are presented in Table 9 for each sub-basin.
Off-site sub-basir� OA was selected to demonstrate results of the frequency analysis.
The data are sho��vn graphically in Appendix A Figure 6. The same relative relationships
occur befinreen 1-�day and 2-day and befinreen 2-day and 3-day storm flow as occurred
for rainfall (Table 2 and Appendix A Figure 5).
The GLEAMS m��del assumes that all daily storm runoff occurs on the day of rainfall.
This is not true fc�r large areas, for example sub-basin OC. This simplification is not a
problem regardirig runoff depths, but hydrograph generation is not simulated with
GLEAMS. Storm drainage from rainfall in day 1 would not all drain out of the basin
during the day of maximum rainfall.
29
Table 8. Average annual storm flow, return flow, and stream flow and nitrogen and
i ��
phosphorus loads for Four Seasons basin groups.
Sub-basin Groups Basin
OA, OB, & OC OD, OE, 8� OF A thru K Total
Area, acres 1,191 257 1,173.6 2,621.6
Storm flow
in/ac 6.46 7.44 7.97 7•24
ac-ft 641.16 160.19 779.84 1,581.19
Return flow
in/ac 3.23 3.12 3.07 3.15
ac-ft 320.56 66.88 300.49 687.93
Stream flow
in/ac 9.69 10.60 11.01 10.37
ac-ft 961.73 227.08 1,077.03 2,265.84
Nitrogen
Storm flow
Ibs/ac 2.88 3.14 3.24 3.07
Ibs 3,438.40 807.16 3,805.43 8,050.99
Return flow
Ibs/ac 1.88 1.33 0.64 1.27
Ibs 2,239.08 341.58 745.58 3,326.24
Stream flow
Ibs/ac 4.76 4.47 3.88 4.34
Ilis 5,677.48 1,148.74 4,551.01 8,377.23
Phosphorus
Storm flow
Ibs/ac 2.53 1.84 0.99 1.78
Ibs 3, 016.84 472.45 1,166.96 4,656.25
Return flow
Ibs/ac <0.01 <0.01 <0.01 <0.01
Ibs 5.96 1.04 4.69 11.69
Stream flow
Ibs/ac 2.53 1.84 0.99 1.78
Ibs 3,023.12 473.49 1,171.65 4,667.94
30
Table 9. Storm fllow depth for Four Seasons sub-basins for 5-, 10-, 25-, 50-, and 100-yr
recurrence interv,als (table continued on next page).
Recurrence Interval, years
Duration 5 10 25 50 100
Sub-basin clays Storm Flow Depth, inches
A 1 2.80 3.47 4.53 5.26 5.99
2 3.07 3.80 4.96 5.76 6.56
3 3.31 4.09 5.34 6.20 7.05
B 1 2.89 3.56 4.63 5.37 6.10
2 3.15 3.88 5.05 5.86 6.65
3 3.39 4.17 5.42 6.28 7.13
C 1 2.80 3.47 4.53 5.26 5.99
2 3.07 3.80 4.96 5.76 6.56
3 3.31 4.09 5.34 6.20 7.05
CC 1 3.08 3.76 4.86 5.62 6.37
2 3.36 4.10 5.29 6.12 6.93
3 3.59 4.38 5.63 6.50 7.36
D 1 2.98 3.86 4.74 5.49 6.23
2 3.25 3.98 5.16 5.98 6.78
3 3.49 . 4.27 5.52 6.38 7.24
E 1 2.80 3.47 4.53 5.26 5.99
2 3.07 3.80 4.96 5.76 6.56
3 3.31 4.09 5.34 6.20 7.05
F 1 2.80 3.47 4.53 5.26 5.99
2 3.07 3.80 4.96 5.76 6.56
3 3.31 4.09 5.34 6.20 7.05
G 1 2.80 3.47 4.53 5.26 5.99
2 3.07 3.80 4.96 5.76 6.56
3 3.31 4.09 5.34 6.20 7.05
H 1 2.98 3.66 4.74 5.49 6.23
2 3.25 3.98 5.16 5.98 6.78
3 3.49 4.27 5.52 6.38 7.24
I 1 2.80 3.47 4.53 5.26 5.99
2 3.07 3.80 4.96 5.76 6.56
3 3.31 4.09 5.34 6.20 7.05
J 1 2.80 3.47 4.53 5.26 5.99
2 3.07 3.80 4.96 5.76 6.56
3 3.31 4.09 5.34 6.20 7.05
31
�� 1 2.80 3.47 4.53 5.26 5.99
2 3.07 3.80 4.96 5.76 6.56
3 3.31 4.09 5.34 6.20 7.05
K 1 2.95 3.66 4.74 5.49 6.23
2 325 3.98 5.16 5.98 6.78
3 3.49 4.27 5.52 6.38 724
OA 1 2.61 3.27 4.32 5.05 5.77
2 2.91 3.64 4.81 5.61 6.41
3 3.17 3.96 5.24 6.12 6.99
OB 1 2.61 3.27 4.32 5.05 5.77
2 2.91 3.64 4.81 5.61 6.41
3 3.17 3.96 524 6.12 6.99
OC 1 2.61 3.27 4.32 5.05 5.77
2 2.91 3.64 4.81 5.61 6.41
3 3.17 3.96 5.24 6.12 6.99
OD 1 2.89 3.56 4.63 5.37 6.10
2 3.15 3.88 5.05 5.86 6.65
3 3.39 4.17 5.42 6.28 7.13
OE 1 2.73 3.39 4.44 5.17 5.88
2 3.00 3.73 4.89 5.69 6.48
3 3.24 4.03 5.28 6.14 6.99
OF 1 2.61 3.27 4.32 5.05 5.77
2 2.91 3.64 4.81 5.61 6.41
3 3.17 3.96 5.24 6.12 6.99
RANGE 1 2.61 - 3.08 3.27 - 3.76 4.32 - 4.86 5.05 - 5.62 5.77 - 6.37
2 2.91 -3.36 3.64-4.10 4.81 -5.29 5.61 -6.12 6.41 -6.93
3 3.17-3.59 3.96-4.38 5.24-5.63 6.12-6.50 6.99-7.36
6.1�.5. Storm Flow 1-day Peak Discharge Rates
The GLEAMS model does not generate storm hydrographs, sedigraphs, or
chemigraphs. However, it is essential to route eroded soil particles and organic matter
through a field (basin) in order to accurately estimate sediment and sediment-
associated pollutant yield. Since the time step in GLEAMS is one day, and precipitation
input is daily amounts, it is not possible to generate continuous discharge rates and
32
concentrations dtaring a storm, or day. A procedure was developed in the CREAMS
model (Knisel, 1�980) for estimating daily peak discharge rates as functions of field
(drainage area) clharacteristics. The relationship, also used in GLEAMS, is
q=200A��aSa�ssQ��LW)-a�s� ���
where q is discharge in cfs (ft3/sec), A is drainage area in mi2, S is slope in ft/mi, and Q
is runoff (storm flc�w) depth in inches. The exponent C is
C = 0.917 ,A o.o�ss
�2)
LW is the length:�vidth ratio estimated as
LW = (I)2 / A
(3)
where I is the lerigth of the distance in miles of the most remote point of the drainage
along the flow pa'�th to the outlet.
This estimating procedure in equation (1) assumes a triangular hydrograph with a 1-day
time base. It is recognized that all storm flow does not completely drain from a sub-
basin in a 1-day period, especially sub-basin OC with a 686-acre drainage area. This
does not invalid��te the peak-flow estimating procedure. However, it would not be
appropriate to e:�timate peak discharge for the 2-day and 3-day storm flow with the
above procedure„
The above relatic�nship was used to estimate peak discharge in each sub-basin in Four
Seasons for the 'I-day storm flow for the 5-, 10-, 25-, 50-, and 100-yr recurrence interval
(1-day storm depths given in Table 9).
The 1-day peak �discharge rates were calculated by the peak-estimating procedure for
Four Seasons b��sin groupings A-K, OA-OC, and OD-OF. The estimated peaks are
33
given in Table 11 for the 5-, 10-, 25-, 50-, and 100-yr recurrence intervals. These basin
groupings represent the areas contributing to proposed STA's.
Table 10. Peak discharge rate for 1-day storm flow for 5-, 10-, 25-, 50-, and 100-year
recurrence interval in the Four Seasons sub-basins.
Sub- Area 5-yr 10-yr 25-yr 50-yr 100-yr
basin Acres Cubic Feet per Second (CFS)
A 215 312 479 482 551 620
B 121 208 251 317 361 405
C 62 128 155 196 224 251
CC 12 34 41 51 57 64
p 79 159 190 239 272 305
E 141 207 250 318 363 408
F 146 231 280 356 406 456
G 67 122 148 187 213 239
H 120 173 208 261 298 333
I 103 182 220 279 318 357
� 3g 92 111 140 159 178
JJ 3.6 12 14 18 21 23
K 66 104 124 156 178 199
OA 235 301 369 475 547 617
OB 270 332 406 523 602 679
OC 686 562 691 892 1,029 1,164
OD 99 147 177 223 255 286
OE 109 191 220 280 320 359
OF 49 88 108 138 158 177
i
�
Table 11. Four SE�ason basin 1-day peak discharge rates.
Area 5-yr 10-yr 25-yr 50-yr 100-yr
Basin AcrE:s Cubic Feet per Second (CFS)
A— K 1,17,3.6 1, 062 1,291 1, 567 1, 891 2,130
OA—OC 1,1��1 924 1,138 1,473 1,703 1,927
OD — OF 25'7 307 364 464 531 597
As in the case of the individual sub-basins, it is recognized that all the 1-day volumes
would not drain fn�m these basins. However, the estimated peak discharge rates given
in Table 11 are va�lid estimates of peak rates.
6.1.6. Alternate A,gricultural Management System (BMP)
GLEAMS was de:veloped to represent a wide range of management systems. One
such system is th�s date or dates of fertilizer application and another could be the rate of
application. The c,ommon practice, as described above, is to apply 10-10-10 fertilizer on
improved pastures. Some ranchers prefer fertilizers without phosphorus, particularly in
view of the problems of phosphorus inflow to Lake Okeechobee (H. Williams, 2006).
Florida soils in ge�neral contain enough phosphorus that it could easily be eliminated on
pastures but probably not on row crops. Animal grazing of pastures results in re-cycling
P in forage throuigh the digestive system of animals and deposition of animal waste
back onto the pas,ture.
Fertilizers, such as ammonium nitrate (33-0-0), nitrate of soda (15-0-16), and potassium
nitrate (15-0-34) are commercially available. Since Florida soils generally are low in
potassium, nitrate� of soda and potassium nitrate would satisfy that deficiency.
35
An alternative model application was made with an annual application of 200 Ibs/ac of
15-0-16 fertilizer on improved pasture within the Four Seasons sub-basin OA. The
(,
fertilizer application was the only change from the earlier simulation presented in Table
4(Sec. 6.1.1). Although GLEAMS considers forage production stress based upon
nitrogen and phosphorus deficiencies, forage yields were not reduced due #o the
absence of phosphorus fertilizer application.
Results of the alternate model simulation are summarized in Table 12. The fertilizer
change did not affect the water balance calculations—that is, runoff, percolation, and
evapotranspiration remained the same for the 1931-80 simulation period reported in
Table 4. Since nitrogen application was the same in each simulation, nitrogen losses
remained the same. Only phosphorus mass and concentration are shown in Table 12
to demonstrate the effect of phosphorus fertilizer application. The elimination of P204
in the annual fertilizer application reduced the mass and concentration losses in runoff +
sediment by about 20%. This is significant when the total area of improved pasture that
drains into Lake Okeechobee. It should be kept in mind that the data in Table 11
represents source runoff and nutrient production without attenuation.
The reduction in source-area phosphorus loss by using fertilizer without P204 indicated
in Table 12 would be significant for reducing net P loss from off-site sub-basins OA, OB,
and OC. The 1.06 Ib/ac reduction would be a total reduction of 1,263 Ibs for the 1,191-
acre improved-pasture area proposed to be drained into the STA.
Considering the acreage of improved pasture in the Lake Okeechobee drainage basin,
this BMP would represent a significant reduction in total phosphorus delivered to the
lake.
36 I
Table 12. Average annual GLEAMS-simulated phosphorus mass and concentrations in
runoff + sediment for 1931-80 with and without phosphorus fertilizer applications.
Phosphorus Mass Discharge Phosphorus Concentration Discharge
(Ik>s/ac) (mg/L)
With Phosphorus Fertilizer
;?.36 1.61
Without Phosphorus Fertilizer
't .33 0.91
6.2. Okeechobe:e Southwest Corridor
Land use in the Qkeechobee Southwest Corridor primarily consists of inedium-density
single-family resid'ences along the drainage canals with agricultural use at the lower end
of the canals. All residences have septic systems. The agricultural area probabfy will
be urbanized to s�ome degree within the next 10 years at the rate of current growth in
and around the City of Okeechobee. Schools and residential areas are already taking
agricultural land ir� this Corridor from S.W. 7th Ave west beyond S.W. 32"d Ave.
6.2.1. Okeechobe:e Southwest Corridor Residential Area
The HDR storm wrater master plan (2004) identified a flooding problem in the residential
areas along S.W.7th Ave. in the vicinity of S.W. 23�d St. This was the only flooding
problem identifiedl in the plan and there was not a recommended solution.
Storm water frorri a medium-density single-family residential area discharges into the
drainage canal al��ng S.W. 7th Ave. Building lots are relatively small with approximately
2 residences per acre, and all residences have septic tanks for sewage disposal. The
37
7tn Ave. canal originate well above the area where flooding occurs in the vicinity of S.W.
23`d St. Even though the residential area draining into the 7th Ave. canal is within the
(
city limits, all residences have septic systems.
Residential and commercial/municipal areas of considerable size drain into the S.W.
16t" Ave. canal, known as the "City Limits Ditch". Drainage into the canal originates well
above SR 70 on the northwest section of the City of Okeechobee.
Flooding also occurs in the Oak Park area, along S.W. 32"d Ave between S.W. 16t" St.
and S.W. 23�d St. Storm water from paved streets without curbing, impervious areas,
and lawns drain into swales which further drain into the canal.
Some residents indicated (March 15, 2007) they had been promised a city sewage
collection and disposal system within 3 years. At present, the lack of adequate
drainage in the Southwest Corridor residential area causes septic drain problems during
the rainy season.
This study concentrates on storm water flow, return flow, and total stream flow with their
respective nitrogen and phosphorus loads from designated basins in the Southwest
Corridor. The basins were delineated by C.A. Smith & Associates in their storm water
master plan (Rubio, 2007).
6.2.2. Okeechobee Southwest Corridor Model Simulations
GLEAMS simulations were made for the sub-basins in the Okeechobee Southwest
Corridor area using the same Avon Park, FL rainfall record as used for Four Seasons.
The sub-basins were delineated by Rubio (2007) and are shown on Map 7(Appendix
C). Basins 1— 10 drain outside the Southwest corridor and are not included in this
study. The sub-basin designations and their respective areas are shown in Table 13.
Some basins include self-contained ponds with their respective drainage areas that do
38
not empty into the drainage canals. These "non-contributing" areas are not included in
the model represE�ntations. Likewise, some basin areas shown in subsequent tables
may differ slightly from those in Table 13 in order to accurately calculate basin flow
volumes and nutriient loads to the drainage canals. Also, since significant flooding is
known to occur ir� the Oak Park residential area and it is proposed for remediation,
separate model simulations were made for that area as well as for the entire basin 31
which contains O��k Park.
Existing drainage canals are shown on Map 5 along S.W. 7th Ave (Okeechobee city
limit), S.W. 16t" A.ve., S.W. 26t" Ave., and S.W. 32"d Ave. The City-limit canal drains
directly into the pE;rimeter canal outside the levee around Lake Okeechobee. S.W. 16tn
Ave. canal is div�erted into the S.W. 26th Ave. canal which further empties into the
Kissimmee River. Drainage water in the S.W. 32"d Ave. canal currently discharges into
the Kissimmee Ri:ver. However, storm water management plans may be changed to
divert the S.W. 32."d Ave. canal drainage into existing ponds created by shell mining in
lower basins of tf�e Southwest Corridor, i.e. basins 26, 27, and 30. Such diversions
would be beneficial in reducing nitrogen and phosphorus loads discharging into the
perimeter canal and ultimately into Lake Okeechobee.
Some drainage fr��m basins 11, 13, 15, 17A, 17B, 17C, and 19 discharges into the S.W.
7in Ave. canal. F�or convenience in calculations, 100% of storm water and total stream
flow from these basins is assumed to drain into the S.W. 16th Ave. canal. Similar
assumptions are rnade to simplify calculations for the S.W. 26th Ave. and S.W. 32"d Ave.
canals. The gen��ral topographic slope is in the southwesterly direction (Appendix C.,
Map 7).
Soils in the Southwest Corridor are generally in the same soil association as those in
Four Seasons. A detailed soils map is shown on Map 8(Appendix C) and are tabulated
in Table 3, Appendix D. Land use by basin in the Southwest Corridor are given in
Appendix D, Tabl�� 4.
39
Table 13. Okeechobee Southwest Corridor basins and drainage areas (from Rubio,
2007).
40
All houses in the� residential areas of the Southwest Corridor have individual septic
systems. The septage is considered "injected" below the soil surFace, and as such is
not entrained into the storm water. It can and does move with percolate in the model
applications, and imay affect return flow.
Land use in each basin was determined from Maps 9 and 10, Appendix C. These data
were used to esi:imate the necessary parameters input into the GLEAMS model for
long-term simulati'ons. Since the locally known "Oak Park" residential area in Basin 30
is a principal are�� of concern for flooding, that area is delineated in Table 13 but it is
also a part of the Ilarger Basin 30.
Basins are grouped to obtain storm water, return flow, and total stream flow volumes
and total nitroger� and phosphorus loads for each drainage canal. Results of model
simulations are grouped for the basins in tables to estimate totals for each drainage
canal.
Soils in the southern-most part of the Okeechobee Southwest Corridor differ from those
in the northern b��sins. The Immokalee soil dominates the northern basins to SW Wolff
Street (SW 28th St.) and the Wobasso series dominates south of SW Wolff St.
Obviously this not a clear line of demarcation, but Lake Okeechobee sand deposits
extended approximately to SW Wolfe St. in geologic time. The flat topography and
different soils ar�a prominent indicators of present day land use, i.e. old city limits
(south), shell mirn�s, and present-day sod farms.
Model simulations were made for the basins draining into the SW 7th Ave. drainage
canal. Results c�f the 50-yr simulation are summarized in Table 14. Annual-average
unit-area and volume data are shown in the table for storm flow, return flow, and total
stream flow. Average-annual unit-area and basin loads are shown for nitrogen and
phosphorus as w��ll.
41
Table 14. The 1931-80 average annual storm flow, return flow, and steam flow and
average annual nitrogen and phosphorus loads for the Okeechobee SW Corridor, SW
7tn Ave. canal.
Basin
12 14 16 17A 18 19 20 Total
Area, ac. 274 203 66 65 332 85 324 1,349
Storm flow,
in. 11.60 9.65 11.58 6.31 9.16 6.77 12.87 10.44
Vol. ac-ft 264.87 163.25 63.70 34.18 253.43 47.95 347.49 1,173.63
Return flow,
in. 2.62 2.87 1.10 2.52 2.36 2.42 2.39 2.45
Vol. ac-ft 59.82 48.55 6.05 13.65 65.29 17.14 64.53 275.03
Stream flow,
in. 14.22 12.52 12.68 8.83 11.52 9.19 15.26 12.99
Vol. ac-ft 324.69 211.80 69.75 47.83 318.72 65.09 412.02 1,448.66
NITROGEN
Storm flow,
Ibs/ac 3.84 3.19 3.81 2.11 3.03 2.45 4.29 3.51
Ibs 1,052.60 648.44 251.57 137.32 1,007.32 208.55 1,389.21 4,731.01
Return flow,
Ibs/ac 0.33 0.51 0.04 0.18 2.08 1.46 2.76 1.42
Ibs 89.83 102.95 2.86 11.39 689.43 123.74 894.41 1,914.61
Stream flow,
Ibs/ac 4.17 3.70 3.85 2.29 5.11 3.91 8.05 4.93
Ibs 1,142.43 751.39 254.43 148.71 1,696.43 332.29 2,283.62 6,655.62
PHOSPHORUS
Storm flow,
Ibs/ac 0.73 0.87 0.07 0.26 0.31 1.45 2.56 1.08
Ibs 198.80 176.61 4.93 16.88 102.27 123.28 829.32 1,452.19
Return flow,
Ibs/ac
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Lbs 0.38 0.32 0.04 0.09 0.53 0.10 0.39 1.85
Stream flow, 2.56
Ibs/ac 0.73 0.87 0.07 0.26 0.31 1.45 1.08
Ibs 199.18 176.73 4.93 16.97 102.80 123.38 831.88 1,454.04
42
A different repre;�entation . was necessary for the Okeechobee Southwest Corridor
compared with th�� residential area in Four Seasons. Some areas within the city limits
are on the city sewage collection systems while most all residences have septic tanks.
These are treate�d separately and distinctly different in the several basins affected.
Relative residenti�al density is considered in the different basins as well. For example,
there are several "retirement villages" that have more impervious area, less lawns, and
smaller lots. Thu:�, the septage is greater per unit area than where lots are larger, such
as in the Oak Parlc area.
Model simulation results for the SW 16t" Ave., SW 26t" Ave., and SW 32"d Ave. canals
are shown in Tak�les 15-17. Storm water and stream flow from these three drainage
canals will dischai•ge into proposed STA's or wet detention ponds.
In the following tables, areas of some basins do not agree with those in Table 13.
There is significant amounts of ponds in the basins that do not drain such as in the
previously excav��ted shell mines. Those ponds do not contribute flow to the respective
- drainage canals. The slightly-reduced areas are necessary to accurately calculate
discharge to the c:anals.
Since localized fl��oding occurs mainly in the Oak Park area of the Southwest Corridor,
that residential area was simulated separately. Oak Park is approximately 83 acres in
size and is considered medium density residential, all on septic tanks. Although it is
within the much larger basin 30, subsurFace storm-water drainage is proposed to help
alleviate flooding. The proposal includes pump installation to discharge the storm water
into the SW 32"d Ave. canal. Results of the model simulation and analysis are given in
Table 18. These data represent the source area, and should be helpful in conveyance
and pump design�. Drain pipes with risers will place the source closer to the pump and
the higher nitroge:n and phosphorus loads would be more applicabJe for design than the
basin 30 data in -i�able 17. The Oak Park contribution to basin 30 discharge to the canal
assumes flow ovE:r the soil to the basin outlet.
43
Table 15. The 1931-80 simulated average annual storrn flow, return flow, and steam
flow and average annual nitrogen and phosphorus loads for the Okeechobee SW `
Corridor, SW 16th Ave canal.
Basin Total
11 13 15 176 17C 21 , 22 SW 16�'
Area, ac 326 220 78 43 115 105 320 1,217
Storm flow,
in. 9.65 826 6.30 10.42 12.95 12.87 10.54 9.92
ac-ft 262.16 151.43 40.95 37.34 120.87 112.61 281.07 1,006.43
Return flow,
in, 2.87 3.04 2.51 1.41 0.78 2.35 2.57 2.48
ac-ft 77.97 55.73 16.32 5.05 7.48 20.56 68.53 251.64
Stream
flow, in. 12.52 11.30 8.81 11.83 13.73 15.12 13.11 12.40
ac-ft 340.13 207.16 57.27 42.39 128.35 133.17 349.60 1,258.07
Nitrogen
Storm flow
Ibs/ac 3.19 2.78 2.37 3.45 4.28 4.26 3.61 3.35
Ibs 1,040.17 610.70 154.57 148.31 492.28 447.54 1,155.37 4,078.88
Return flow
Ibs/ac 0.19 0.24 1.98 0.30 1.38 0.29 0.76 0.59
Ibs 61.82 53.78 154.36 12.83 158.80 30.79 243.60 715.98
Stream flow
Ibs/ac 3.38 3.02 4.35 3.75 5.66 4.55 4.37 3.94
Ibs 1,101.99 664.48 338.93 164.14 651.08 478.33 1,398.97 4,794.86
Phosphorus
Storm flow
Ibs/ac 0.14 0.78 1.73 0.31 0.18 0.71 0.82 0.59
Ibs 45.76 111.25 134.68 13.16 20.41 74.92 261.26 721.44
Return flow
Ibs/ac <0.01
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Ibs 0.46 0.35 0.11 0.03 0.07 0.13 0.45 1.60
Stream flow
Ibs/ac 0.14 0.78 1.73 0.31 0.18 0.71 0.82 0.59
Ibs 46.22 171.60 134.79 13.19 20.48 75.05 261.71 723.04
44
Tabie 16. The 1!a31-80 simulated average annual storm flow, return flow, and steam
flow and averagE: annual nitrogen and phosphorus loads for the Okeechobee SW
Corridor, SW 26t" Ave canal.
Basin Total
�!3 24 25A 25g 2g SW 26tn
Area, ac 303 97 339 21.8 297 1,057.8
Storm flow
in. 8.90 6.30 5.89 7.30 7.23 7.04
ac-ft 22��.73 50.93 166.39 13.26 178.94 634.25
Return flow
in. 2.96 2.51 2.59 2.29 3.15 2.84
ac-ft 74.74 20.29 70.63 4.16 77.96 250.32
Stream flow
In. 11.86 8.81 8.48 9.59 10.38 9.88
ac-ft 29!3.47 71.22 237.02 17.42 256.90 884.57
Nitrogen
Storm flow
Ibs/ac 3,.04 2.38 2.05 2.41 2.47 2.49
Ibs 92;?.53 231.18 695.07 52.55 732.85 2,634.18
Return flow
Ibs/ac 0..40 2.36 1.99 0.17 0.27 1.05
Ibs 12��.93 228.76 673.82 3.63 79.29 1,106.43
Stream flow
Ibs/ac 3.34 4.74 4.04 2.58 2.74 3.54
Ibs 1,0��3.46 459.94 1,368.89 56.18 812.14 3,740.61
Phosphorus
Storm flow
Ibs/ac 0.90 1.85 1.70 0.11 0.40 1.09
Ibs 271.51 179.54 577.69 2.31 117.69 1,148.74
Return flow
Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Ibs 0.48 0.14 0.41 0.03 0.53 1.59
Stream flow
Ibs/ac 0.90 1.85 1.70 0.11 0.40 1.09
Ibs 271.99 179.68 578.10 2.34 118.22 1,150.33
45
Table 17. The 1931-80 simulated average annual storm flow, return flow, and steam
(
flow and average annual nitrogen and phosphorus loads for the Okeechobee SW
Corridor, SW 32"d Ave canal.
Total
26 27 29 30 31 SW 32nd
Area,ac 219 212 331 318 72 1152
Storm flow �
in. 6.30 8.26 7.25 826 5.89 7.45
ac-ft 114.98 145.93 199.8 218.89 35.34 715.12
Return flow
in. 2.51 3.04 3.17 3.04 2.59 2.95
ac-ft 45.81 53.71 87.44 80.56 15.54 283.05
Stream flow
In. 8.81 11.30 10.42 11.30 8.58 10.40
ac-ft 160.79 199.64 287.42 299.45 50.92 998.17
Nit�ogen
Storm flow
Ibs/ac 2.15 2.83 2.40 2.77 2.09 2.51
Ibs 470.58 598.94 794.22 880.97 150.18 2,894.89
Return flow
Ibs/ac 0.61 0.18 0.11 0.18 1.21 0.28
Ibs 134.22 37.48 37.24 58.77 87.47 321.18
Stream flow
Ibs/ac 2.76 3.01 2.51 2.95 3.30 2.79
Ibs 604.80 636.42 831.46 939.74 237.65 3,216.07
Phosphorus
Storm flow
ibs/ac 0.86 0.35 0.01 0.46 1.20 0.43
Ibs 187.40 74.88 1.83 147.36 86.72 498.19
Return flow
Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Lbs 0.31 0.34 0.33 0.51 0.09 1.58
Stream flow
Ibs/ac 0.86 0.35 0.01 0.46 1.20 0.43
Ibs 187.71 75.22 2.16 147.87 86.81 499.77
:.
Table 18. The 1�a31-80 simulated average annual storm flow, return fiow, and steam
flow and average: annual nitrogen and phosphorus loads for the Okeechobee SW
Corridor, 83-acre Qak Park residential area.
UNIT DEPTHS & MASS and
COMPONET VOLUMES & LOADS
Storm flow, inc:hes 10.54
ac-ft 79.90
Return flow, inc;hes 2•77
ac-ft 19.16
Stream flow, inc:hes 13.31
ac-ft 92.06
NITROGEN .
Storm flow, Ib:�/ac 3.52
Ib�� 292.99
Return flow, Ib:�/ac 2•'� �
Ib:� 175.29
Stream flow, Ib:�/ac 5.63
Ib:� 468.28
PHOSPHORUS
Storm flow, Ib:�/ac 2.11
Ib:� 175.13
Return flow, Ib:�/ac <0.01
Ib:� 0.33
Stream flow, Ib:�/ac 2.11
Ib:� 175.46
47
6.2.3. Okeechobee Southwest Corridor Summaries
Data for the four drainage canals in the Southwest Corridor are summarized in Table
19. The SW 7t" Ave. canal is proposed to drain into an STA or directly into the Lake
Okeechobee rim canal. The SW 16t" , SW 26t" , and SW 32"d canals are totaled in
Table 19. Discharges from these canals may or may not ultimately drain into a single
STA, but the totals are presented in Table 19 for user convenience.
A map of average-annual storm water nitrogen by basin is shown in Appendix C, map
11 for the Southwest- Corridor area. A similar map of average-annual storm water
phosphorus by basin is shown in Appendix C, map 12. These maps provide a ready-
reference of relative loads by basin in the Okeechobee Southwest Corridor
Assumptions for nitrogen and phosphorus reductions from the literature used for the
Four Seasons area conveyance channels were also used for drainage canals in the
Okeechobee Southwest Corridor. Reductions in the conveyance system are shown in
Table 20. Also, the same reductions for N and P losses in wet detention ponds (STA's) -,
used in the Four Seasons area were used in the Southwest Corridor. The reduced N
and P loads for canal losses in Table 20 were used as loadings to wet detention areas
to estimate the reduced N and P discharges from the detention areas. These loads out
of the detention areas represent approximate loads to conveyance channels as ultimate
discharge to Lake Okeechobee. Reductions in the retention areas are shown in Table
21.
48
Table 19. Averag�� annual storm flow, return flow, and stream flow and average annual
nitrogen and phosphorus loads for the Okeechobee Southwest Corridor.
Drainage Canal SW 16 , sw 2s ,
SW 7 Ave SW 16 Ave SW 26 Ave SW 32" Ave SW 32"d Totals
Area, acres 1, 349 1, 217 1, 058 1,152 3,427
Storm flow, in 10.44 9.92 7.04 7.45 8.24
ac-ft 1,173.63 1, 006.43 634.25 715.12 2, 355.80
Return flow, in 2.45 2.48 2.84 2.95 2.75
ac-ft 275.03 251.64 250.32 283.05 785.01
Stream flow, in 12.99 12.40 9.88 10.40 11.00
ac-ft 1,448.66 1,258.07 884.57 998.17 3,140.81
NITROGEN
Storm flow,
Ibs/ac 3.51 3.35 2.49 2.51 2.80
Ibs 4,731.01 4,078.88 2,634.18 2,894.89 9,607.95
Return flow,
Ibs/ac 1.42 0.59 1.05 0.28 0.63
Ibs 1,914.61 715.98 1,106.43 321.18 2,143.59
Stream flow,
I bs/ac 4.93 3.94 3.54 2.79 3.43
Ibs 6,655.62 4,794.96 3,740.61 3,216.07 11,751.54
PHOSPHORUS
Storm flow,
Ibs/ac 1.08 0.59 1.09 0.43 0.69
Ibs 1,452.19 721.44 1,148.74 498.19 2,368.37
Return flow,
Ibs/ac <0.01 <0.01 <0.01 �0.01 <0.01
Ibs 1.85 1.60 1.59 1.58 4.77
Stream flow,
Ibs/ac 1.08 0.59 1.09 0.43 0.69
Ibs 1,454.04 723.04 1,150.33 499.77 2,373.14
49
Table 20. Total nitrogen and totai phosphorus reductions in the Okeechobee Southwest
Corridor drainage canals.
TN Nitrogen TN TP Phosphorus TP
Input Reduction Discharge Input Reduction Discharge
Canal Ibs % Ibs Ibs % Ibs
SW 7 Ave 6,655.62 60 2,662.25 1,454.04 15 1,235.93
SW 16 Ave 4,794.86 60 1,917.94 723.04 15 614.58
SW 26 Ave 3, 740.61 60 1,49624 1,150.33 15 977.78
SW 32" AVe 3,216.07 60 1,286.43 499.77 15 424.80
Total 18,407.16 60 7,362.86 3,827.18 15 3,253.10
Table 21. Total nitrogen and total phosphorus reductions in the Okeechobee Southwest
Corridor STA's/wet detention management areas.
TN Nitrogen TN TP Phosphorus TP
Input Reduction Discharge Input Reduction Discharge
Canal Ibs % Ibs Ibs % Ibs
SW 7 Ave 2,662.25 25 1,996.69 1,235.93 60 494.37
SW 16 Ave 1,917.94 25 1,438.46 614.58 60 245.83
SW 26 Ave 1,496.24 25 1,122.18 977.78 60 391.11
SW 32" AVe 1,286.43 25 964.82 424.80 60 169.92
Total 7,362.86 25 5,522.15 3,253.10 60 1,301.23
50
6.2.4. Okeechobe�e Southwest Corridor Storm Runoff for 1-, 2-, and 3-Day Durations
Annual maximum storm runoff was determined for 1-, 2-, and 3-day durations for the
Okeechobee Southwest basins and drainage canals. The Gumbel extreme-value
procedure (Potter, 1949) was used to estimate the 5-, 15-, 20-, 50-, and 100-yr
expected storm fl��w depths for each duration. Results of the frequency analyses are
shown in Table 2:? for basins in the SW 7th Ave canal drainage. Similar analyses were
made for SW 16tr' Ave, SW 26t" Ave, and SW 32"d Ave canals, also. Frequency data
are shown in Tables 23 — 25, respectively, for these canals.
As seen in Table�: 22 - 25, there is less difference befinreen 2-day and 3-day storm flow
than between the 1-day and 2-day events. This indicates that rainfall events last little
more than two days even where hurricanes occur in some years.
6.2.5. Okeechobe:e Southwest Corridor Storm Flow Peak Discharge Rates
Peak rates of dis��harge were estimated for each basin in the Okeechobee Southwest
Corridor using the: procedure outlined in Sec. 6.1.5. The peak rates were determined
using the peak 1-day depths by recurrence interval in Tables 22 — 25. The 1-day peak
discharge rates in cubic feet per second (cfs) for the 5-, 10-, 25-, 50-, and 100-yr
recurrence interv�ils are shown in Table 26.
The peak dischan�e rates for 1-day storm depths were calculated for each of the SW 7tn
Ave, SW 16th Ave, SW 26th Ave, and SW 32"d Ave canals, also. These canal peak
discharge data are given in Table 27.
51
Table 22. Storm flow depths for Okeechobee Southwest SW 7th Ave. basins and canal
for 1-, 2-, and 3-day durations for 5-, 10-, 25-, 50-, and 100-yr recurrence intervals.
Recurrence Interval
Basin/ 5- r 10- r 25- r 50- r 100- r
Duration Inches
12
1-day 3.30 4.01 5.14 5.92 6.69
2-da 3.61 4.38 5.61 6.46 7.29
3-day 3.85 4.66 5.94 6.82 7•70
14
1-da 3.07 3.76 4.86 5.62 6.37
2-da 3.36 4.10 5.29 6.12 6.93
3-da 3.59 4.38 5.63 6.50 7.36
16
1-da 3.30 4.01 5.14 5.92 6.69
2-da 3.61 4.38 5.61 6.46 7.29
3-da 3.85 4.66 5.94 6.82 7•70
17A
1-da 2.59 3.22 4.24 4.94 5.64
2-da 2.80 3.49 4.59 5.35 6.10
3-da 3.00 3.73 4.90 5.71 6.52
18
1-da 3.02 3.70 4.78 5.52 6.26
2-da 3.30 4.03 5.19 6.00 6.80
3-da 3.48 4.24 5.45 6.28 7.11
19
1-da 2.67 3.31 4.34 5.06 5.76
2-da 2.89 3.59 4.70 5.47 6.23
3-da 3.08 3.82 5.00 5.81 6.61
20
1-da 3.43 4.15 5.30 6.09 6.87
2-da 3.77 4.55 5.80 6.66 7.51
3-da 4.02 4.83 6.13 7.03 7.92
SW 7
Ave Canal
1-da 3.16 3.85 4.96 5.72 6.46
2-da 3.45 4.20 5.40 6.26 7.04
3-da 3.67 4.46 5.70 6.57 7.43
�
52
Table 23. Storm f`low depths for Okeechobee Southwest Corridor, SW 16th Ave. basins
and canal for 1-, 2-, and 3-day durations for 5-, 10-, 25-, 50-, and 100-yr recurrence
intervals.
Recurrence Interval
Basin/ 5- r 10- r 25- r 50- r 100- r
Duration Inches
11
1-da �3.08 3.76 4.86 5.62 6.37
2-da 3.36 4.10 5.29 6.12 6.93
3-da 3.59 4.38 5.63 6.50 7.36
13
1-da 2.89 3.56 4.63 5.37 6.10
2-da 3.15 3.88 5.05 5.86 6.65
3-da 3.39 4.17 5.42 6.28 7.13
15
1-da 2.59 3.22 4.24 4.94 5.63
2-da 2.80 3.49 4.59 5.35 6.10
3-da 3.00 3.79 4.90 5.71 6.51
17B
1-d a 3.17 3.86 4.97 5.74 6.49
2-da 3.47 4.22 5.42 6.25 7.07
3-da 3.68 4.46 5.71 6.57 7.42
17C
1-da . 3.43 4.15 5.30 6.09 6.88
2-da 3.79 4.57 5.82 6.68 7.53
3-day 4.04 4.85 6.16 � 7.06 7.94
21
1-da 3.43 4.15 5.29 6.09 6.87
2-da 3.77 4.55 5.80 6.66 7.51
3-da 4.02 4.83 6.13 7.03 7.92
22
1-da 3.18 3.87 4.99 5.75 6.51
2-da 3.48 4.23 5.44 6.27 7.10
3-da 3.71 4.50 5.76 6.64 7.50
SW 16
Ave Canal
1-da 3.08 3.76 4.86 5.61 6.35
2-da 3.14 4.11 5.30 6.12 6.93
3-da 3.60 4.38 5.60 6.50 7.34
53
Table 24. Storm flow depths for Okeechobee Southwest SW 26t" Ave. basins and
canal for 1-, 2-, and 3-day durations for 5-, 10-, 25-, 50-, and 100-yr recurrence
intervals.
Recurrence Interval
Basin/ 5- r 10- r 25- r 50- r 100- r
Duration Inches
23
1-da 2.89 3.66 4.74 5.49 6.23
2-da 3.25 3.98 5.16 5.97 6.78
3-da 3.29 4.27 5.52 6.38 7.24
24
1-da 2.59 3.22 4.24 4.94 5.63
2-da 2.80 3.49 4.59 5.35 6.10
3-da 3.00 3.73 4.90 5.71 6.51
25A
1-da 2.51 3.14 4.14 4.83 5.52
2-da 2.72 3.40 4.49 5.24 5.99
3-da 2.91 3.64 4.81 5.62 6.41
25B
1-da 2.75 3.41 4.45 5.17 5.88
2-da 2.99 3.69 4.82 5.60 6.37
3-da 3.17 3.91 5.10 5.92 6.72
28
1-da 2.73 3.39 4.44 5.17 5.88
2-da 3.00 3.73 4.89 5.69 6.48
3.-da 3.24 4.03 5.28 6.14 6.99
SW 26
Ave Canal
1-da 2.69 3.37 4.41 5.13 5.84
2-da 2.96 3.67 4.81 5.59 6.37
3-da 3.13 3.94 5.16 6.00 6.83
54
Table 25. Storm flow depths for Okeechobee Southwest Corridor SW 32"d Ave basins
and canal for 1-, 2-, and 3-day durations for 5-, 10-, 25-, 50-, and 100-yr recurrence
intervals.
Recurrence Interval
Basin/ :�- r 10- r 25- r 50- r 100- r
Duration Inches
26
1-da �'..59 3.22 4.24 4.94 5.63
2-da 2.80 3.49 4.59 5.35 6.10
3-da �'..99 3.73 4.90 5.71 6.51
27
1-da �?.89 3.56 4.63 5.37 6.10
2-da :3.15 3.88 5.05 5.86 6.65
3-da :3.39 4.17 5.42 6.28 7.14
29
1-da �?.73 3.39 4.44 5.17 5.89
2-da :3.01 3.73 4.39 5.70 6.49
3-da :3.25 4.03 5.28 6.15 7.00
30
1-da 2.89 3.56 4.63 5.37 6.10
2-da :3.15 3.88 5.05 5.86 6.65
3-da :3.39 4.17 5.42 6.28 7.14
31
1-da .�.51 3.14 4.14 4.83 5.52
2-da .�.72 3.40 4.49 5.24 5.99
3-da :?.91 3.64 4.81 5.62 6.41
SW 32"
Ave Canal
1-da :?.76 3.42 4.47 5.20 5.91
2-da :3.02 3.74 4.88 5.68 6.46
3-da :3.24 4.01 5.24 6.09 6.93
55
Table 26. Peak discharge rates for 1-day storm flow for 5-, 10-, 25-, 50-, and 100-yr
recurrence intervals in the Okeechobee Southwest Corridor.
Area 5-yr 10-yr 25-yr 50-yr 100-yr
Basin Acres Cubic Feet per second (CFS)
11 326 350 420 529 604 677
12 274 453 538 672 762 850
13 243 252 304 386 441 495
14 203 249 299 376 429 480
15 78 105 127 162 186 209
16 65 120 142 177 201 113
17A 65 94 114 145 166 187
�7g 53 g4 g9 124 140 156
17C 142 190 225 280 317 353
18 332 325 390 492 561 629
�g 85 111 134 171 195 219
20 324 453 538 672 762 850
21 105 161 191 237 268 299
22 320 355 424 533 606 679
23 301 345 427 539 616 691
24 g7 124. 150 191 219 247
25A 367 250 306 393 452 510
25g 2g 43 52 65 75 83
2g 233 222 270 346 397 447
27 246 239 289 366 418 468
28 303 325 395 504 579 650
29 331 334 406 519 596 670
30 353 338 409 519 593 666
Oak Park 83 179 213 267 303 338
31 72 97 118 151 173 194
56
Table 27. Peak ciischarge rates for 1-day storm flow for 5-, 10-, 25-, 50-, and 100-yr
recurrence intervals in the Okeechobee Southwest Corridor drainage canals.
Drainage Ar�ea, 5-yr 10-yr 25-yr 50-yr 100-yr
Canal acres Cubic Feet per Second (CFS)
SW 7 Ave 1,349 932 1,120 1,417 1,617 1,811
SW 16 Ave 1,��17 790 950 1,205 1,377 1,544
SW 26 Ave 1,()58 683 841 1,079 1,241 1,399
SW 32" Ave 1,'I 52 714 871 1,116 1,285 1,446
57
i.0 REFERENCES
Barth, C., T. Powers, and J. Rickman. 1992. Chapter 4: Agricultural waste
characteristics. National Engineering Handbook, Part 651, Agricultural Waste
Management Field Handbook. U.S.D.A.-National Resources Conservation Service,
Washington, D.C. pp. 4-1-4-24.
Bottcher, A.B., and H.H. Harper. 2003. Estimation of best management practices and
technologies: phosphorus reduction perFormance and implementation costs in the
northern Lake Okeechobee watershed. Letter report submitted to the SFWMD, West
Palm Beach, Florida.
Bottcher, A.B., J.G. Hiscock, and B.M. Jacobson. 2002. WAMView. A GIS Approach
to watershed assessment modeling. Proc. of the Watershed 2002 Pre-Conference
Modeling Workshop, Ft. Lauderdale, FL.
Crane, L. 2007. Personal communication.
Debo and Associates. 2001. Georgia stormwater management manual—Volume 2:
Technical Handbook. First Edition. Atlanta, Georgia. 797 pp.
Harper, H.H. 1999. Pollutant removal efficiencies for typical stormwater management
systems in Florida. Florida Water Resources Journal, September, pp. 22-26.
HDR Engineering, Inc. 2004. Comprehensive stormwater master plan for Okeechobee
County. West Palm Beach, Florida. 157 pp.
Heatwole, C.D., K.L. Campbell, and A.B. Bottcher. 1987. Modified CREAMS hydrology
model for Coastal Plain flatwoods. Trans. of the Amer. Soc. Agri. Engr. 30(4):1014-
1022.
58
,
I
i
Knisel, W.G. (Ed.). 1980. CREAMS: A field scale model for Chemicals, Runoff, and
Erosion from Agricultural Management Systems. U.S. Dept. of Agri.-Sci. & Edu.
Admin., Conserv. I�es. Rep. No. 26. 640 pp.
Knisel, W.G., P. '�(ates, J.M. Sheridan, T.K. Woody, L.H. Allen, and L.E. Asmussen.
1985. Hydrology and hydrogeology of upper Taylor Creek watershed, Okeechobee
County, Florida: C)ata and Analysis. U.S. Dept. of Agri., Argi. Res. Serv., ARS-25. 159
..
Leonard, R.A., W,G. Knisel, and D.A. Still. 1987. GLEAMS: Groundwater Loading
Effects of Agricultural Management Systems. Trans., Amer. Soc. of Agri. Engr.
30:1403-1418.
Livingston, E.H. '1995. The evolution of Florida's stormwater/watershed management
progress. EPA/625/R-95/003. Cincinnati, OH. pp. 14-27.
Nicks, A.D. 1998. Climate generation database. Washington, D.C. CD-ROM.
Otis, R.J., D.L. ��nderson, and R.A.Apfel. 1993. Onsite sewage disposal system
research in Florida, an evaluation of current onsite sewage disposal system (OSDS)
practices in Florida. Contract No. LP-596. Florida Dept. of Health and Rehabilitative
Services, Tallaha��see, FL.
PEER Consultant.�, P.C. 2004. Flow diversion to the Nubbin Slough Sta.: Evaluation
of alternatives. S��ience and Engineering Support Services, Contract No. C-15983, WO
01-05. Miami Lakes, Florida.
Potter, W.D. 19��9. Simplification of the Gumbel method for computing probability
curves. U.S. Dep1t. of Agri., Soil Conserv. Serv. SCS-TP-78. 22 pp.
Rubio, O. 2007. 'Personal communication.
59
Schueler, T.R. 1995. Stormwater pond and wetland options for stormwater quality
control. EPA/625/R-95/003. Cincinnati, OH. pp. 341-346. �
South Florida Water Management District. 2005. Phosphorus budget method for
assessing the impact of land use change on phosphorus loads leaving a land parcel.
South Florida Water Management District, West Palm Beach, Florida.
South Florida Water Management District. Application of the CREAMS-WT computer
simulation model for assessing the impact of land use change on phosphorus loads
leaving a land parcel. West Palm Beach, Florida.
Strassler, E., J. Pritts, and K. Strellec. 1999. Preliminary data summary of urban
stormwater best management practices. EPA-821-R-99-013. USEPA, Washington,
D.C.
U.S. Dept. of Agri.-Natural Resources Conservation Service. 2003. Soil survey of
Okeechobee County, Florida. 135 pp. +56 plates.
U.S. Soil Conservation Service. 1972. SCS National Engineering Handbook. Sec. 4,
Hydrology. 548 pp.
Williams, H. 2006. Personal communication.
Williams, S. 2007. Global Mapping. Personal communication.
Wotzka, P., and G. Oberts. 1988. The water quality performance of a detention basin-
wetland treatment system in an urban area. In: Nonpoint Pollution: Policy, economy,
management, and appropriate technology. Amer. Water Resources Assoc.:237-247.
Zhang, J. 2006. Personal communication.
60 i
�
�
i
/\ ��L'mYV��40 W���V�l�YllO�hd+
Figure 1. Map of ��torm water study area showing Four Seasons and Okeechobee
Southwe�st Corridor ...........................................................................62
Figure 2. Annual ��recipitation, Avon Park, FL, 1931-2005 .....................................63
Figure 3. Cumulaf;ive precipifation, Avon Park, FL 1931-2005 .................................64
Figure 4. Cumulai:ive difference between annual and average rainfiall, Avon Park,
F�.., 193'I-2005 .................................................................................65
Figure 5. Gumbel distribution, 1-, 2-, and 3-day �,von P�rk rainfall for 5-, 10-, 20-,
50-, �nci 100-yr recurrence interval ......................................................66
Figure 6. Cumbel distribution, 1-, 2-, and 3-d�y runo�F for 5-, 10-, 20-, 50-, and
100-yr recurrence interval, for Four Seasons Sub-basin OA .....................67
Figure 7. Gumbel distribution, 1-, 2-, and 3-day runofFfor 5-, 10-, 20-, 50-, and
100-yr rE:currence interval, for Four Seasons Sub-Basin H ........................68
Figure 8. Gumbel distribution, 1-, 2-, and 3-day runoff for 5-, 10-, 20-, 50-, a�nd
100-yr rE�currence interval, for Oak Park area Okeechobee Southwest
' Corridor........... ..................................................69
.............................
Figure 9. Gumbel distribution, 1-, 2-, and 3-day runoff for 5-, 10-, 20-, 50-, and
100-yr r��currence interval, for Okeechobee Southwest Corridor
pasturearea ...................................................................................70
:iJ
�
N
��
D�
� �
� �
0
� �
�. .
c� �
��
. �
0
—fi
O i
� I
N
n
O � �
�'
CD
CD
n
O '
C
�
� �
�
�-+ -
O ! Y'r
� : ',�
� -
h w .
(D -
� ..
�
� �
� �
� -
fD
�
(D '
� ti
�
� g
-� i
� '
� '
o €
� s
^ a
� ♦ ;
D a
�
�
�
�,:
�
�,� � f _
_, j .�\
. , . ' ,•' , . �..'�: . , f, ?;: `^t
CRAI.,..G A ShfI�H & ASSO�InTES
. �, :.`'a„P -:k„`• �"J
m..�3",:,.��,.
Figure 2. Annual Rainfall, Avon Park, FL.
�! 1.
.
:.;1
70
�
a�
� 60
�
n
� 50
�
._
oC 40
�a
� 30
_
Q
20
10
C
Year + 1930
63
1 7 13 19 25 31 37 43 49 55 61 67 73
Figure 3. Cumulative Rainfall, Avon Park, FL
� 11'
� ���
� 3500
�
�
� 3000
n
�
�
= 2500
.
�
�, 2000
>
._
� 1500
�
�
� 1000
C�
500
�
1 8 15 22 29 36 43 50 57 64 71
Year + 1930
.-
F ig u re 4. AVON PARK, FL,1931 - 2005,
Cumulative Normalized Rainfall
Diff=P-Avg
� i
� •
� �
O.�
l�J
'O.�
� �
l�l�i
Figure 5. 1-, 2-, and 3-day Rainfall
Avon Park, Florida,1931-2005
12
10
��3
�
a�
�
�
c
- 6
�
�
�
.�
�
�
2
�
Plot Position for 5-,10-, 25-, 50-, & 100-yr
Recurrence Interval
—o-1-day
—�..�-- 2-day
�- 3-day
..
1 2 3 4 5
Fig��re 6. 1-, 2-, & 3-day Runoff, Four Seasons
Sub-basin OA
�
7
6
�' 5
�
�
�
c
,�; 4
�
0
_
� 3
o�
2
1
0
Plot Position for 5-,10-, 25-, 50-, & 100-yr
Recurrence Interval
—♦-1-day I
--0— 2-day
-�— 3-day
67
1 2 3 4 5
Figure 7. 1-, 2-, � 3-day Runoff, Four Seasons
Sub-basin H
�
7
C�
cn 5
a�
s
�
c
0 4
c
�
� 3
2
1
0
--s-1-day
—�— 2-day
--�- 3day
. :�
� 2 3 4 5
Plot Position for 5-, 10-, 25-, 50-, & 100-yr
Recurrence Interval
F=igure 8. 1-, 2-, & 3-day Runoff
Oak Park Residential Area,
O�keechobee Southwest Corridor
;
�
�
� 5
a�
�
�
�
� 4
0
_
� 3
�
�
1
�
Plo�tting Position for 5-, 10-, 25-, 50-, and
100-yr recurrence interval
.�
1 2 3 4 5
Figure 9. 1-, 2-, & 3-day Runoff
Okeechobee Southwest Corridor
Pasfiure Area
�
7
:
�' 5
a�
�
�
_
�; 4
�
0
_
� 3
�
�
1
C�7
Plotting Position, 5-, 10-, 25-, 50-, & 100-yr
recurrence interval
--a--1-day
--�— 2-day
—�-- 3-day
70
1 2 3 4 5
Qaf�f�lEV��O� f�--�'�[��[��
"fable B-1. Four Seasons Summary ....................72
�if able B-2. Okeechobee Southwest Summary.......73
71
Table B-1. Avera e annaal storm flow, return llow, and stream flow, nitro en and hos horus losses, and eak 1-da dischar e, Four Seasons sub-basin summa .
SUB-BASIN
A B C CC D E F G H 1 J JJ K OA OB OC OD OE OF
Acres 215 121 62 12 79 . 141 146 67 120 103 39 3.6 66 235 270 686 99 109 49
Storm
flow, ac-ft 128.54 83.28 39.84 9.65 58.59 90.59 93.80 43.05 89.00 66.18 25.06 2.31 48.95 126.51 145.35 369.30 68.14 65.67 26.38
Return
flow, ac-ft 56.44 30.65 16.02 2.88 79.49 36.42 37.72 17.31 29.60 26.61 10.08 0.93 16.31 63.25 72.68 184.65 25.08 28.67 13.19
Stream
flow ac-ft 185.0 113.9 55.9 12.5 78.1 127.0 131.5 57.4 118.6 92.79 35.13 3.24 65.29 189.76 218.08 553.94 93.22 94.28 39.57
Nitro en
Storm
flow
Ibs/ac 2.88 2.87 2.86 3.51 3.32 3.09 4.78 3.07 3.19 3.04 3.05 3.06 3.19 2.88 2.86 2.90 3.17 3.24 2.82
Ibs 618.3 344.9 177.2 42.1 262.3 435.7 697.3 205.7 368.4 313.1 119.0 11.0 210.5 676.8 772.2 1,989.4 315.8 353.2 138.2
Return
flow
Ibs/ac 0.74 1.47 0.33 0.15 0.36 0.94 0.45 0.68 0.14 0.76 0.26 0.26 0.14 1.88 1.88 1.88 . 1.18 1.27 1.73
Ibs 150.3 176.5 20.4 1.8 28.2 132.7 65.2 45.7 16.5 78.1 10.2 0.9 9.1 441.8 507.6 1,289.7 118.2 138.6 272.4
Stream
flow
Ibs/ac 3.62 4.34 3.19 3.66 3.68 4.03 5.23 3.75 3.33 3.80 3.31 3.32 3.33 4.76 4.74 4.78 4.36 4.51 4.55
Ibs 776.7 521.4 199.5 43.9 290.4 568.4 762.5 251.4 384.9 391.2 129.1 11.9 219.7 1,118.6 1,279.8 3,279.1 471.2 491.8 222.9
Phos-
Phorus
Storm
flow
Ibs/ac 1.03 1.73 0.35 0.14 0.76 1.52 1.05 1.51 0.08 1.34 0.77 0.77 0.08 2.36 2.54 2.56 1.33 2.07 2.35
Ibs 1,178.2 785.3 259.2 62.2 442.1 766.5 689.4 101.2 9.6 138.0 30.0 2.8 5.3 554.6 685.8 1,776.7 131.7 225.6 115.2
Return
flow
Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Ibs 0.86 0.48 0.25 0.05 0.32 0.56 0.58 0.27 0.48 0.41 0.16 0.01 0.26 1.20 1.35 3.43 0.40 0.44 0.20
Stream
flow
Ibs/ac 1.03 1.73 0.35 0.14 0.76 1.52 1.05 1.51 0.08 1.34 0.77 0.77 0.08 2.36 2.54 2.56 1.33 2.07 2.35
Ibs 222.3 208.1 22.0 1.7 60.4 214.9 153.9 101.4 10.1 138.4 30.2 2.8 318.9 555.8 687.2 1,780.2 132.1 226.1 115.4
Peak Rate
1-da , cfs
5- r 212 225 128 34 159 207 231 122 173 182 92 12 104 301 332 562 157 191 88
10- r 379 271 155 41 190 251 280 148 208 220 711 15 124 370 406 691 177 220 108
25- r 482 342 196 51 239 318 356 187 261 279 140 18 156 475 523 892 223 280 138
50- r 551 391 224 57 272 363 406 213 298 318 159 21 178 547 602 1,030 255 320 158
100- r 620 438 251 64 305 408 456 239 333 357 179 23 199 617 679 1,164 286 359 178
72
Table B-2. Average-annual simulated storm flow, return flow, and stream flow depths and volumes, plant nufrieni loads, and 1-day peak d6scharge rates, Okeechobee
Southwest Corridor.
Oak Park SW 7 Ave Canal SW 16 Ave Canal SW 26 Ave Canal SW 32" Ave Canal Total Canals
Area, acres 83 1,349 1,217 1,058 1,152 4,776
Storm flow in/ac. 10.54 10.44 9.92 7.04 7.45 8.87
ac-ft 79.90 1,173.63 1,006.43 634.25 715.12 3,529.43
Return flow inlac 2.77 2.45 2.48 2.84 2.96 2.66
ac-ft 19.16 275.03 251.64 250.32 283.05 1,060.04
Stream flow in/ac 13.31 72.99 12.40 9.88 10.40 11.53
ac-ft 92.06 1,448.66 1,258.07 884.57 988.17 4,589.47
NITROGEN
Storm flow Ibs/ac 3.52 3.51 3.35 2.49 2.51 2.80
Ibs 292.99 4,731.07 4,078.88 2,634.18 2,894.89 9,607.95
Return fiow Ibs/ac 2.11 1.42 0.59 1.05 0.28 0.63
Ibs 175.29 1,914.61 715.98 1,106.43 321.18 2,143.59
Stream flow Ibs/ac 5.63 4.93 3.94 3.54 2.79 3.43
Ibs 468.28 6,655.62 4,794.96 3,740.61 3,216.07 11,751.54
PHOSPHORUS
Storm flow Ibs/ac 2.11 1.08 0.59 1.09 0.43 0.69
Ibs 175.13 1,452.19 712.44 1,148.74 498.19 2,368.37
Return flow Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Ibs 0.33 1.86 1.60 1.59 1.58 6.62
Stream flow Ibs/ac 2.11 1.08 0.59 1.09 0.43 0.69
Ibs 175.46 1,454.04 723.04 1,150.33 499.77 2,373.14
1-day Peak Rate cfs
5-yr 179 932 790 683 714 --
10-yr 213 1,120 950 841 871 -
25-yr 267 1,417 1,205 1,079 1,116 -
50-yr 303 1,617 1,377 1,241 1,285 --
100-yr 338 1,811 1,544 1,399 1,446 --
73
t9�'F*'f h [��iX �; �'af,:�
iViap1. Topography of Four Seasons Area, Okeechobee Co., FL ........................... 75
Map 2. Soils map for Four Seasons Area, Okeechobee Co., FL .............................76
Map 3. Land use map for Four Seasons Area, Okeechobee Co., FL ..................... 77
Map 4. Cover map for Four Seasons Area, Okeechobee Co., FL .......................... 78
Map 5. Average annual storm wafer nitrogen loadings, Four Seasons Area............ 79
Map 6. Average annual storm water phosphorus loadings, Four Seasons Area....... 80
Map 7. Topography of Okeechobee Southwest Corridor, Okeechobee Co., FL........ 81
Map 8. Soils map for Okeechobee Southwest Corridor, Okeechobee Co., FL.......... 82
Map 9. Land use map for Okeechobee Southwest Corridor, Okeechobee Co., FL.... 83
Map 10. Cover map for Okeechobee Soufihwest Corridor, Okeechobee Co., FL........84
Map 11. Average annual storm water nifrogen loadings, Okeechobee
Southwrest Corridor, Okeechobee Co., FL .............................................85
Map 12. Average annual storm water phosphorus loadings, Okeechobee
Southwest Corridor, Okeechobee Co., FL .............................................86
74
Map 1'. Topography of Four Seasons Area, Okeechobee Co., FL
75
•
u�
�
•
�
LJ
Map 2. Soils map for Four Seasons Area, Okeechobee Co., FL
�
�
•
76
•
�
�
�,
*S�IiL� LE�Ef�lt?
BASII�GER AND PLACID SOILS; DEPRESSIONAL
d ( BASI�GER FI�E SA�D
�; FLORIDA�A; PLACIDAND OKEELANTASOILS; FREQUENTLY FLOODED
C �;;_ FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIO�AL
FT. DRU�� FI��E SA�D
IMMOKALEE FINE SAND
;;,; MYAKKA FI�E SAND
C ' OKEELAf�TA MUCK
` PARKWOOD FI�E SAND
ST. JOH��S FINE SAND
<� VALKARIA FINE SAND
VNABASSO FI��E SAND
�SUB-BASI�S
�,.�
SEE APPENDIX D, TABLE 1 FOR
SOi� R'F�OPERTIES PER BASIN
�s
afe
�
���p
"USDASSURGODA7A ASMUSSEN ENGINEERING, LLC
UPDATED A!'RIL 2007
SE 8TH ST
0 625 �,250 2,soo 3,�50 5,00eet OKEECHOBEE, FLORIDA
�_:
�,�.�-,�
, �.��.�,
I�
�
�
r
�
�
�
Map 4. Cover map for Four Seasons Area, Okeechobee Co., FL
�J
i
•
�g
�
•
.
. . . . =r.. r ..� c i-..��..,_. - .g' -c�;'-. _z-r - ). � - •,y-�- t� � i- - t+-n'. -
:r_, - � .., _. i _ � �'�,... �.,M _ --:o-�.. _ t �4a t � j:_ ;'a [ •"� - �:
�y � I/... .:�_.: t' `-'.r - t .....vFa-� �-1> '"�-��'� �l 7 - .j:: 1��.- �_'H��_.
�, . ,
� -_ , `�, Y��- .� �:5� , COVE�R MAP OF FOUR SEASONS AREA � '� �4� ;> � ;� _ �{�_ � �1, `' z���` � ` 5 `� �
. �.a� � i 3 � " ��_, . .
� / �� . �, B ,{� ' �° �,• ` t . � 3`� � �1 1 'C�. e,� '"�, ? . �t"_
- .� / �.'._ ` � ' 'f. I 'r..tw ��, ` 11 . � .t. Y F l f \. Si' 1 y�
- �� r-. � : � �.�5� ��,,,,� ����.y��t MAP 4 OKEECHOBEE CO, FLORI DA ������ � �-;,; '? � �l�`�� �sh"�� � �� t, �;��' _-�,� -� �
_ ,
} t . 1
,t: � ,,.
J � k 1
. - '�'1 r ,r f
'i� � .c r a �.
r ..A I
- 'Lt r
�t Y � >
� �+r-, e r
- nr-Tz-;T. -- :r, .I-- ! pb'�,��::.,'" �,. `�_ ryt f,..'�: _.�7_, y:, "�'�.:-- n � . .k.
.:. . �-' � . ' . . �.
� . . . .� .._ . .
. t� �U �� � .1,
. . . .� - _ .. � .
.: � �� .:. '` .- i _ .
, 3,_�_ .. �,. „ . ., , . ...:;..�- --,,. , . --„ ,-. - , - -,» - � t ::,•<>� ti'
- �'� t - ,�. ,.- ,. �, :, . ..... �..., . �_.-:�-� . � ..,� �.,_y t: .f�'�i. �.1 � �.r1;i e, p R: � �.
., i$ ...:. _.;;.... � .,. .,: _ , .v... ; ,.v�- .�.. ....., _ + i i- �' a -
. . . -�.. , ""._'. , __......�--._ -..... . , .... ._� .. ��.:....._�.:. ,._,.._ ...�.."�'.';_- �'' :'ii -i'. 3- - p . _ }. J�. _ �.�i
..,. . . '.:. . r...._�. ... .: ..'.._:. -.��,., ...__.�-.. ..: :.. .. ,.._. 1� ! �!c 'l '1 .]�Y4` l✓
. 1 �.�. _ ..q �.�'�,. ) y. �� 1� i!~ f ,.� "+ . 7� i - � i.-..{ ♦t, y,."
.. =.^. le:'. .n:.. _' 7�., h � - . .��c'��'~
i � � I �. �,;.. .�
- i.
Yy �
j_ � _
.. . . � - ... . � , -,
. ,. , . �.. . . .. .-�'. :. ...:..
" �; :.' . i . . . �. �. ... � -' � r:. : `,: ,":. .:- � . J�-.-� C .�. V.
- 1 � - �� :,.� _ s �, �p`
':
,.a�.. - � -�- � -.�-. ...;.,. _,, ,;. � ,�.....- -�- � -.1 ---�_-. - - - �:�.a ..s�
t.. �'. - - 5" - .-#c'r ,v . r `lc �c #:.. .
_ �. . r _ _ �.'
-+. � �. - �k,..
ar' - - �
. -:i. - -'... .� -........ -....�: -� -
- � a
- - .0 `!'....
� rt a
� � . _�_w. , x..
*
- - �!�� " - .-��.
- ^� t
. r�' , i - •.�..
�.:4��� ' ��
- '�'�.. L �'.��
- .:� 1� :' } .
. t'{
I Y
4
1 .��!i -4P . i.T`_. �1, �'
! - -.A.�"et.---
_ �'�
_ ,: .� .: � ,. . ., ...
't � - .J� N\��.` 2`�.���
" . ' �
�� �
- r �, t, 1_
?r . -� F . r=.'-.
:.� -
' ��-
� � � .:. .. � . ,. ' '..
. , .,-
_
.."�� ..�. .. :�.. `__. ., �.. `�c _�: :.. .�:�� ':.`� .� _.�. ._�- . _ .- "h�'d `
r ,:
. .... ��. �-.... .:.. ... „ . . ...... ,.:... �.._.. ._,. ._�: -. k. ._ � :�.�r. : . � -� � 4.... s:: -� .
;.. �.� :.5.� . ..r� . „ ..;,.._ ...... .:.. ..._ :�,..�..- w. ...�. �.r..,, -
..... ..:�. _ . _._.. r��. . . . .. �. ... .. . .�. -... ...._ ..... . .�. .. ...a1 .r ).. 1... a -.T,� .:P �Y'r. i i 1
�.. . . _, . . :_ _ E... : :. _. _ ,_ _ . . �,. ?;c� a �� c �r"��
_ _. . .,... _ �� _ � : . ; .: _ .. : �;. ,._. _:..._ T� _ ��''� -
�. ._,._. _ . __ , . _ . .: . .._-,� ,. _.,. _.. : _ .., ��_ - i s �. ,- - -
, . , .. . . � . ,: ._.:... _ ._._. . ,. -� _ .. '.�.� -�� _ .�
�` -...... . ,; . „_. h... .' . . .�'. . �: , ... ... .. .: -� -.� . ,�. �i.�k _ - - r - f.
�j � ;1� ` ' �` .'y: � �;� � ;�
.,:.., . ._._ .. . _. _ _ ,,,.- ; .� -. , ,__.r ,.. <, ,-
. .._ . _.. - - ' . _. . . _. _., _..-_.� _ � ;. .::r , ' •.� 3� �
E. .1 .. i.- �1 .Gs 3T' -�i � 1. -. aC� : 'Se`:.
-s �. e ��.�
_ . .. . .. .. _ _ .
�•- t_ 5_ r. t �, 1.
.:_.. ..... .. ,.. _.. . , .�. -� ,z :r s ti
.
.
�
.-.
, .. s- - _ _.. •. i . ,. ,: ..:. .. >: _ _ �::: . :; .. z. , .,. .. ,_ - r .'i � �. t _ .:r.
-_..:�,-� :. .. . ,._- _ -�v:..,..,. _,.�,.,�- , . ._ .� . . .a,.�._ . ., .,� �, ::� ..s t-� �r 'Y% _
_. . a _..,. ., _ _ _ . .. .:.:; . _.. : . . �. � �, , . . _ .. .. - _ `�s . ;z ;.�� .� tia
-� ''�. �� >' ..Y .2 �!�� - �
♦ .'�:.: .aY . . ., .: } .ti... : . � "._ " - ....:� . � � �
_ .t ,t.� : r.: --�.�J
_ a . . . . . . -. .. . .. � -., .
i ,k � �: - { -} •.z .
_ •_ , . :
,�
f... _... ; . .�r _._ ._. _ . _, • '. �,. � -�;«
:F.� � � - - �::'i� . �a_ . :��;'� , * •-:,j . I . s r
_ . � . . . .� .,� ..-`� ,. ..� .�. �.-:- . ., r r.! r..� 4 . . �i 1
.
� . . � .;.... . . I "" :-_�.._ .�. .. .. �r*' ..n,-.e....�... ... . . �:�2.':. ..�-.,� " �f ':.� _
.... : •;�F- . .. ..�� :,.. ..,- .�.. -.: .... _.., �'�- k'. :�. 'p_ti_ .
�
._.,._-.._ .� ... - , ... _ ,._ : .•�� ... ... -.::.� _. ...•..; .-. . -:.-. . .. � �-z, - .
. .. _� . ..,. .:�.:. .,,:,� ,�... ,_..�.,�:.. .. ... -_ -,.., -.�;.� _ .
. .. _ : . �i.-�.i ..:..:. _ __,...�- ..,., ..�.. _.. �... _... �., .,�. , :.. .- :��jf ,tr., •��. s# -
� _
�- -- . . � . ._. . ._.., ..:.., - __. -. ... . ....,.•. '•�4.� :� � ,��
�
f i '�
}� >
,. - --� �:.. ::.,....� .. �-., l�..._.. . . .c�.,. _._._:. ,:�-.•. --�''�- - �t .� �
.
. _ .-- ..,. :- :�.� . _... ..,� -.�... ,.�.:�...:-, .. ..:... . �,: �.. ... . : '� '�i:� .i 'I.'.(� .. ,l
_. r � „ . . - _:-. .. . . :... , . :..� ...:. '^._.'... ..: .... ':�' y ♦-.7� i.
-�. � �-. ..:,"'.- ......� i� r. . _�:.'. �_. .... ..>. ., . c.._ . _ :.'� .:/- .�i �. .'.,t '..1• .
- � i .. ' ���'"" } r�_ L. :.-k �r �. T . , ». S.�
�t :,',AZ,'i� - - ,e,� �',f � 3� .f - �4�.'
r• � - �.
r:; r..
L
- F-
� /,�
.�
�. -
r i ?�+�
,k
_ l•
�:� '
�' �s
�
_ _ . i.�r''r.� . 'i
r•,
�.> y
��
+` q
.ry., ' _
� _
�-'r- . ',i � - . .
i - - t
-9
�f a.
1� �
�r:..
--�'''. ."-.,�.���.. �Y.' - f 3'i'. .4.
.1: - f
,.-;.
'F' 1, r?7. .fi
{` _
.P
�
r
- . y� �'� -.r•'
.� �_
�,-•-
- -' eq
- '2-:� y _ �.
TC, _ �a •�_ .
_ ?x :
�
e.
•���.��� `{ � �.
�
.'�b' �' - . .s,�t!'. _
s_:
�
�, ',
'i
�^ .l -
'�•� ?
� : �n'�.
i .^u.-^ • _�.' "4 i A-_'.
,�� -
1�'2� -
�!
_ "�
l "
� t ' '
�+c. -=r � .�.
_.���
- ,,:
' � _
,�'.
,�/ �-
�`Y ,�, ,
` '�
- t �
_ ..-
: . .. ., ,.. �'.: . .. � ..
:.r..t: i � ��: ,�' s '':
�l;� . E ':y� �...� i . �.✓`.
� l � ,U - ; T.. �' i� _
_ - y iY-�' _ "�
� •�� F' .
jr�� �' � _
� �.
?!a -
�� i : �
'!r, •'�' TS♦ ' � �.i�`' � .� VT".�:
t5 .�F�`� a.:i 7 - JY . `-.. /..
_�,..Y � i -
.,
_ ;
�'� 1 - 1
•� _ �i
.y _+rti�. �t�.
F
Ti ♦
I
_ 2 �SY ��:��
� �. �
- s
�F'
�t
k' r ' �'
.....s ..h��-. .�.`_�_,. - - t.
=�` - �x"
�
� �q .� �..
:�k� .`�'c,�� �... 1�- � .
. y� _ �. �
- �
�"i�
',� .-� .'� -t ("' ` . . Ts ' i e } _ - �.i� - ; F
:°a°i: r:. - w
�� �� I
•�_Ti�� - e�1
�.
�� i � , _
� �
] "
..
y ' • .
. .
�
��.
v..at - - - - ��? �• �1 '.
. ; N - .. . : • r. ;...y., < < R ': �R ..
..�. �'�' .�-�. .�i ��
,_ : ,. . ..
, :. _ .. �. r �,.�r, , _ � . ,, -. . . . �,
.. .. .. . . ,._ , :_ _ - . r
..._ . <s_, , ., � �. ,� ,. .: t-_. ._- � ,.. :. ,, , ,
r� .�.�J � -
� - . _. _ Y>, _ ,#._ .. _ _.. .. . . ...,� -., i-. ♦_ . ,._. .. i.
« . � . . -J� . . ���� �F I -i-� �� , .
_ ._.. ,f �� � ..., < � - " . r
" ..� .:.. - - l< .�. , �`' 1��. _ �, ..;�. .'�. � � .*
. .�_� .-. .�r::. '.: .. �- : ;�e-.., ��_.:. _.�. . +�'i � -
--.�. -., _ ��b,, 1 ..._,.. ,:; ,,, �-.. ..-.... ..:-� -- . . �` ��� .. ':�e - :.�- . �4 -
. _ . ,� �- . Y.:. _}. , _ ,�•: .. .:.�., _ '- .. . , .. _ �^L l -
,.
. .. .. ... .1-..-- , _ X�t,q 1 ;�_.1 _ ..... .;.�^ -�:-<�'�. ._ . . -.. .- ' . -.:. �
-�. ; .:..:.s�-. - - �"! i 'C « �..j .._.- � .. ..1. .. �c_:. . . �.. . �....� ... . : . .' . , rp� 1 �� . . . � � -
._�__.�..:t�� - ..1.,� ..TA . ::�,. _�..., .. ,� .. ...s. . .. ..., • :: i .a•-,..Y � :.� rl�!'�.'�' �.� ..
i 4.: . - � � � �� � . � .+�.a1� . _
- -A Y
:.--..� .. � _ � ,.,.. .. � . �. �... . � . . . - �' : ' .
.. - y . . . -. .� . .. . .... , ; ,. i
:.:.. : . -a ..., t. ..;, . ._.. ,._ {. _�__. ��-. '•� � ; Yi
.... .. � : ,.:., . :.,. 3_ ..,:a : it. . ..� - is ''-- \^ n . �i`` / IE
,.:_� -.. ..., . ._. ,. :$ � t. -:. ..Ya.� .-.- ..... ..... .. .�i _ 3 ?-r �� ��� r. { -�-- �
,:# � :�.. - � �f - �: "'�?;:5� _� 'r >�a , "n r
L: a: �..�� �'C . .>.:.at. � _♦.
_ > i• ,,,�, ��.. .'4 ::�
R _ - � Y. f .i r�v( , �
n'i y
_ g:. �
S •,�' 'h
- o, - �.
;e =:ai. s'
ti . ,� _ , • _
-� , �
,.
;,
� _ , . ,
•` a� � _-:. "'>� . .:: - � ... . -. .�, - . . .�:��. ��_�, : �� � . .�_. .c.'�,i: . .. . . , ' _ .. �u s �;.`;.r-. -
� t -. s t .• . : . .:�I . Y _,.
i. 1 - �. -t. - `Y�✓' .. ''S �� 1.' ..�' .�Y . '�
.
�.��.a- 4: � .ti.r., " ., . � .:`.r. . .: ,::� : �'',_ .,'_ ..; , . ..::�-�. --' _ - 4 -:o;.. ,7 \�c' r�:�er .
..J . .1 �. -, r�. . .!'.,v. y � SS'. C � _ - _..v e . :i �...
�
. ...
'a "Sr_ ., y, .. .�_- . . � . w�,�_ �_ . '�. :
y:
:
_ . � � -l�.'. .: !, y,. � ... 4 .. -.-. .5;�':. . :.. . � � -.. � .
.,� -..��.�j ._ . nf . ; . .> -.�... .., .. .. �.� . � ;-�-.. .-: . .�: .'.y �. •,, "i'i � .�t y - - � �: - `�
_. . -.i. l- _ , .._ ,l,. ¢_ e.�,.. -, f! ,__,. . �.. : .. . ... y .: �. ..,......r... �r�S ��'�.: - r
V� � .! � ' �y `,- " _ i
'..-t .,� .� :�. .�-..�..r - . I". .!- , . .- ..�. ,...._...�y . _ ;-".:... .� , .�........,�. ... G 1 �Z. .,f. .,�
-.. �_. � 1 �'I � ^ , "' �.. .. .' . ..�. �. ..._ . .,.;, 5' ,� ..: ... ._2 .•� .��'� �. �'�v i. ' - ;il{. ` ��f.
.� .. �-. . � .: _ ..m t.. ... .. , .. .f . ^Y.,..� .... i� . .:-... .. :� . i"�;�.a.., .� _ fi :�� � \..;t� :�'.
. ..k��.. g .¢... _ .�,, r_t �'._ �- y� � -
.,� ,i.: .. . . �.. ., . . . , :. „ � � � - , 'y� �
_: . F: _, _� _ � . : v , � .4 _ .� . �..:. � �, �:� / �\ .-� r \ y�
.: . . .� . �..s. ,�..: �,. ,.... , . : _ _. _. . .. , ,.,: _, �g ;•; z
� � I � - +r .-� rw . � - � « ..- t . . . � �,.� �?. . _ _ ._ *.. t ��s� . -�L ° �����(� � � .i .f.!' !� 1 '�� �
1 : _- •�' . - .,,.E� ... : . ,- � 1 .. �--- -::. ,>�,•, -.. -..- .� _ . 5.. _5..� �3', l 1 -
... ..j.. .�.�..�:'��.K��r.. s ..� 'c ..., .. ..;.�.,��-.-� �:�.�.;-.� . �.:R..:-..,.�. , ., .�.� :S - �:�y _
..:.- .-. . : �.,r ,•. . �-.'�i : -v.�. � ..ts. s��:.'a. .._��. ,.. �.. ...... .4� t. - -S:`a� 1 :j���:
--,.i_ � ,.}. fl ,. .-..e r. �:_ .c .. ,._ -... _ . -: � ,.... :, ri .. 7 . � � -..,�y
_ � �i.. A ..t. .•. . - . _' . �rir" .::� -- . I'_
�- .. T: . ,..`;, .-i"i�.�r.�... �y,r.�. ___"°� .:.�.:.•• ,. �G .�y.
� . : 1' � �'
, { � __ �, r _ � �� ��' t�.z�=y; '�` {_ -,; 1
k.. r,. f ^' �: , • --+-...-.... `� - -
�: .y: r -x -- _ - '�'- �: y: - - �' i,
. f., �i. .�.3 . ' .i'.i' ! -
} `�...
. - �w �� .. : �.
i� v�
t !� �
� : '�
: ':. ' -.. . . . ' ..� " . . '_'� • :. . ' .
- ,� � C' :� .'s�. �,�_ i. . ll
r
....: , y� .� . . . � � :F .�.�-.a.. '; ._r ..:_.. . �.� �: � •.^' .�:.1 1` `
: �� . ��., i�.._{�-:t: Yrr .r .iC t _ s:_ . �e� ;1:..�. _ �, _ � �^�'_.
.r..:.�y:���...�.� - . _ .� �...� ... .:: �- '� '"•' .�. .�� (-s. .�,. �.�.
,a _. 7� - -- �=.a�._ a .cy . . 1: � -_ - ��. - �+y_ _ �'s
=c: x' - - �]� . .:'�'�� n,� - �� �u�.,r, . ��.�.
�r� ��-_ .�a_. . ..,.$.�F..�'_ "�•.. -�.� ,�. .,.�� ��'��;i, .-�:�_ � . c t �.i- � ;7'��'
�
_�. � �1-'-!h«-.sJ ��¢ .r. _ . � '� _( �i 'r .t- :> �-$�. �Ta�'�`- '�.F� �""
� w.� � ' ,.� - 7. . .>�,i. k�, . s` � 1 - - -
.. � �'_� � �� iM6' iY � 1 1 :�:i� .Y -
M1 .7� s 's -. �F �`'i '6 '7��. i - ,'� 'l.' J_ •4=; �.�r - �.�':
�
_ . , Y
'., _i , . '• . : ..
' .>....' ,,.... �-.' ' 1 ��- '. . -. _;_�'•` -��`' �4C: . r- . . °��.',h.�. �. _ �- _ Y
_ .t�._` v�� eA)' ' _ �. ' -_ �.�( '.�.',•Y yx' .
- ��.Y� ..�:: ��.� _. '.. ..:`._`..: +..
.�J' ,.�s ' y .. . - :I _ ' } . � \ 7
. � �-. �, � :,. ._�
-� � �
� � .�:� ` �':: ;-„
.�. .,� -, . -:-�Q- , � - 1
- � - ,� _
_ , _ : x
t�' - 4'� . .-K. - ' �.� � -
',r_ -.fi., e � �. +�.
i� +:�'=+ - � 1 'i.: � � -
4-'��'=- 1 m i�: �"'t - �7. •� 1 - �1� �,fi. .
3 - -- . . ".ti.5� � - 1.
�' - - • j: - . �r - .�t t �. e • a� � t,... -" . n . f '
-- - € :�c•� " r �.
- t _ ,
�-s- :
t. ,
f� t , �.
� �
��•-- • . : . _ .
•� - ,:... . ._, . ._. '.
, ��,. ' ..� _ ..:,;. + . . - , ., ., � � ` � - �%�
. 'r :, ( ; , _ y�i
:.�. . _ _ . . -
-a ,� si=r' i�. i� fi i, :t a ar•' : t ,, /
P . Lr' + . ' � : '�K ��'. �'� . . 1 •1 - �l-9 � � . -
�•.. � 1 - '�- 4. ::3� ' ( ,'�!!
. - �+.. -.y.., t�i-� '�� . - �.`.
'r- .! � r t • i�r�r �-��� - /7 .`� �/ -.' ir
.J i '� � . . - �'4t.F� . p.,� ../' • .� fli��: - .�. .
� l f �..:�� .�:e� `�� � f� 1 i.� ��, .�� �
� ��• .y{.: l. �':� :J � � ,�' . *
a - ,.:._ a - �� 1 - ,] l-
_ � , a � C �, >`-
_ .� _
6 1. f
. a �.�;_ ' � .:�.,.
. �
�. _ , t �8 . �.' 1.
'-� ,I�i�
`.3.c. f r :� i .n� � /•�' t•• -Je'. �4� - -
J � t �c:t:; f . � Sr: ,+ ��-�. - I:. � .
- .r+.. � ��:�' i: . -y : . � i�i $� '� .:�iVk�i�,i. . e� - - j � � � -+��� q
-:�-- � - --.s ':�" q..�`-: �,s._Y. .�a. . .[ ;�l '��� 9 . S
. 1 �.. -r., ; . �Y � �i , � •� �'- . A :.-o : q, y � � -.��. -
� � �:��..� �� � i _ �;�, �.r . _> . �t." � � .r. - I r � .._.,, �. -:f
�,�' � i'1. _ '�7 t' •�..iL } I; '`'i A'.
:i: 1- �a.. ..� _. 95� .L. t .:• .f�1 n - �i.�• :�fs� - Y: -�.
_ _
;d .a' �a--' i, .1« :�.L 4v�'1'�e�Y_:.-r'�C^_K� L��-_'J:,.-..��. �t ��' �� � 0�
_
# {; '� �
, .
i � ,'{
_ ., .. i� ..� - y ,-.- ,
,.�. .•. ,� - , -J - � s .-:":•;I �,�..
� - .. n r., . �s - .� � :
!.. �4;� �, �' ,.,T-.. ^,• - �w�-�� t. -
_ �...,Y,. ���k � 1 ' ' .
�h� +t. 1`::i. �T .-{ [�
� � � --��i ::� . �`
� _ �_ � ��r. _ �. �,; _ ,.
:.':"�..�._ � . � 3 a . ar .`i
- � � � �. � �r ; `�: L
- f a ��� • � ; x. -. �
. . F� • 1 ! ,x.. d. • .. 7 :J •y. � •_i � � � �.. _ � �� . rG. ���' '
- � . .�k- ��' � . I - .�:f+t' ...�,"i.l.`: - - ��,�'R.� •�� - i �
a+`'. � �fw�. - - .t._ .,1,� �p `•.p...
..
- y.,a� �y �
a- .
.�' --..,+..e �;. � ' .
.. .[ It � -:.!.� .�� ,'k. �'t,.�. ":s"'r.•.. (��� ''t _. i
� 1 , �F•'�"'� -- ' l � c . x � �'� - � - - 9p��� _•'a , ! . .. ;s.
. I= �'i: ,� . �"r : �� . [� PI.�.. . ab i �.�{ �'1. :�I� (��p tl.:k - .I . .V _
t'�� sY:. ` ���.- .) '.�- _ ,y,. k'�.
1 s e•� :�. ' a� . ,5:: r � �' ,:1 . `l :i .r - -
_ _ a -` �S �� v At".:h� ^ti'�1 '�'�� `'i -J>��
' ( 'cl¢'. 'i4 - 7? . -_}r I ,.+.�`C': � � ����„ I q. .,{-�-�'
, ., _
- �a ,.
_ ;
. .
. .
, � :. .
'r �" �...� ..�V7 • �A .. ��. ..�.� •I. ' -i•1 �• �-�f . , .1
�,
� • ��, �'
� � �.� . .. .. . . •� •
y�r.c
. - - .- � . �, y .: . � . � 4 '
G�. '+.�F,.. F _ �� �{z'� �. I y. .�; '.�' �,h.,, :.�nF�. ie-_ "i �-�'71�. o ''��� �}�;�
�
� f�. --t _ a.� :f - '.L .,.'�� �.'� .,'S.� - - �.�c. ��- �i �..o.'
-s� _r,`'Yl � ,F� �' � _ a -.r� ' 1 f • = �a tN..,.' �L't • - .
.�- _ :R . #..7i� :`--�a--�- � } '.,f3M �.. ��=t� .;� f •�i3.< :r, . �.•.�
- � �!`�.�' �'"f'.. �'u4'�.� .1• •S'- f t- � F: �3 ' 2�i�C`. } n _ - . :� . i
_ ��,^ `f � �'��- - y •� ���• '�� a ' . _
' ' . �f . %�'�f - l 7_ 1 C'.1 .1J� .1 7 :� ,•`.
e 1, ; "'i o �:+a �- . . t � _ � . , . - t' fs � ;C- '�-!'-'_.- `: . e' � 2 . � � � -
�1-. - � :}� �" � ; � � � .� _-::e-. i �.
� ., .
- �j- i s �y % -.il• i`•9+ -_r3. �� �: ,�+� � -`�`�i ���„'-t..- - - \� - i �
- ��..� � . �1.. .�� _ .kMi' � �.9� v. :�:: _ i y.�, i . ti4:
' • . . . . , , � �. . . -.
. n -„ , u, . . � ',� F� r�_r-.�.=�'�-. - - - -�, ' � � -
_ �''%- � � r M -,�'- - e' - i ,: s, t ' c�/� + � 1 � f � � 5 ,
��'-: - ;• K ..'ar R; . s _ ,� ;�• , :i . '=� w.�, � �"�t .�. d : 1 i, _
.a- ` - yI ,�,€ � . `�: �� �,{�:."" * ,{ ,.� ��,�,, �
ub-- . . - �I f . - �`.'k � , � a i �i� - .]11�• ./.y� .�i ` e�qlCr �.1 � r _` � .. i -� r
. . fP � "� ` � ,eA�,r '�� �1 •7. �.�t'i�' � :.i.- ' .'i•. _ ".1.w" � k
- . ,�'� „ - . 'a'y'Mr �,�.�.. �:.:,S..r� • �T " �i""'� a ti - �r
.. ..� � . '• � .-� ..
� . . . . �
r+ � . _ , . � l�'� � - [ � - T�;.'�i"o�--'�i�'ti... r � ��, - - - l .
,. . kF . . . , . ,. . _ . . _ - � -
._" , ... . , .. ,._ ' _
a _ .. , .. s� ` . �:.r� . . } -j.'� -
-- � � �s : . ' , '<• t � .. ..� �: -_ --- ...,� .�3.. .. 4 � r �4 ,r �-�r' ? _"�. ' i r� � j„ .. . '�' ,� l
�'.� . :�'4 ,7 I : - ^�.. , f ^ w a Y�, .�i� � ) r.{ 4 �y� � i � � : !PY� � . t Ei �
�- ;,,., • � �. , : � , � e� � «.. � T � �.._, _�.Y. � ,� t' �` :' :; � y„
.p y `•.�'t, � -., - �,�3• 7v�'�"��Y�'' 1 _ . � � yt,�
. ', o. 2t��'-l..y 'v , .a.� a [� � - •:••"'�' :ix�.: rti �� � �_}� . -
:,.. i. . . ,',.-- .' - . . �
. .. � �-�. ���. � � � �.s.. 3 ..y.. __.�r� :1 -1 'i•� �i� � 1�` _ �1•-'� `�� .
,: :. .. .. �.. . : . �},�S
. . . . J. • _ � � Nr
� �-; � �;': _ . .. , - • , ' • _ � .•'Y-=-. -�,��� � n Y. � �� } .9 r �; ��t+, , oji='i�i��'`.,. �� r.. •`tit 7 � �' '�
-_ -. ; .. . , ..� �. : .. . -. .,. s . . r.: , . ., ..; .'�i . s. • �� :l.� -- r . -;fA -- - - � ''��.f r - - '7`¢� '�
1 .. _ .. ,;, .': � ,.� S . .,�.•.•-„-i!`- �.i "�-����:r -.�^�- ,�¢ S� i �w� i� :�.a. r� l . �.� .;t�.
- � i�. `�. ;=: x, �_ - r .�.t-v: �R.- � x. ;�� •i Y ^� ,i,{ .� "�: 1 ;i
�. : y'.1 _ '. ��+ � :y",� d . wt-Rt� ,:.s��S.<sc..Y . .w� '� ..1 r, �.� S'.� � I "?''-r,�.--, �-�' [ � .,n�4�i�'��. '. "� ' i., . - ' �
`3K , �.� � � y, � s � J � �yg:,�.'.r �' r`µ. : i [. . a. i �. r _ ,-?�7 � . p .._ �> i .,j `sT� . {,y� i � i� Cr �''�
- :Ki'� i�� _'Fti_ i . i'd•�Z i� -+' .T� f i _/M � �� - ��. A� 51 c��'� e�, -s'� "�1]� � _ ' 1" � ,��.- Y. ar:" .,i y�r ���%_
c. .:y�'�,,. h, f r. ,-.�1 s`�f�ti %� �;z�.r �,. �s.a,w.l--- `<�'�i.�rr� _-��':�.�, _� .�� �.:'lb!'1. > � - - ,.
�1., L -' �a ��:ti, ♦� ��Y�_i� 1 - .Ir . .�r " ',�1�. 11Y♦ -•T :'1�' y !7 ��r j-' t��w�' � _y:I S`
egend ...� •�.,:�; _ .,: �_� -I; I�; � ,� �j��.,., .� , ,:,�;�;:. ,�) � $.� �:� �
1 � _�• ��'q- '�hhi ~TT�'T�' -!_lr S� •Y ��,�{ i^ �� ���"��•�•�+ '�O`� _� }t. { '� �,' - y�`
'i � °~ � ��J��� �? f ��2'� T_L's;t�-`''�a.•�- ,` .,�;.4`.,��'. �S .ia'{f,� �!�st�,�x: .�,- �':�- ::3.� � � _���y� ,�� _ j� -
- 1R - - x.�•�'t,�*, `�hj 'MO �1. •.s? �j(i;�[7 ;� ,� .�� �� ���, �t,5r: � ♦ __ i::����'r��`�. � c. �.��:- ' �.
, , Y �. �P � q �". �� I •� ��w..- !. i : 3 . �' •.y � � q-r �--� r�•-i'• Y��;."-"_ � � : � t � - - -
ROADS - =� � �:-��;- r,! R T y■n J L� �• N�'�Y�R� �' i'�w�[ ���J`�Y S .i" � � .i '"1 i+Y r {+ � f
--T :,� 1: ..�y,._aY��� � r�.� , Y �� .i a'11 . rY-�y�'�� "- �:TT} 'L'j{� "`'yi'Tr ��'. � �fY . {�ijl� �� �'� ` _ ( .
� �� � ��{ 1. { �js��. _ ���.:�iii_►/*JTe,'�Ff1��,�Yl�'f���/.i�'iY���}�.' S! �-�.r+ �6�. ' )h ��]r �'�.� � �M'1t t� �' C�`.
r�,r,.� . �7S � . f i�„S,i ���• - -e-(� - �-.` '�l . � - ` :�
. .%hi� b"T- "� �� rR: ?�L =_ �9�f6.x"'��!• ��;�:i•.�. .� �w.. ��•4" ��l f -'� !'Y.��, 6 ��-,�: r„i,:
, ::
. �i
-" •.�
. �
, �
- • - ' .. j�� \ y��
� � �' „ . ' a: r
�` ,f ., 1 . " "; . s � P. a C ��_ I f. .�"j _ ' A�_'
SUB BASINS ��, � �3�. ,� :� �-�`� �e S ����--�i.2�`��N RIR����flq�2lS�rO�_ _.t k F 4�Z� ��T��ldi/► o�l {t' -i
_ �-.'i ..� s,�r+ • i � . -�I•T�� �:�.{S�' '♦ { � s4r� K �''�,� t�:.��:-,��•y '.�"_ -+.`��: _ - y
�_� • d,�� '� ���yA '�' � '+` a �.. ,�r.`sI '�'t��. '/�am � _,:'�l S_�.s,� � �1 7 � ..�r� ;'j _
d� - - :a / "1� ••�i -o � 6�.�. tb. -.a ��' �.� �c�' v�1 --_ '`f
: � - ���': �,a ,�, � :.i.+# �- i , �'� � � � .• a' f .� - f t" `�" rt '� = � - I
9 � i i• _ ";+= •.�r' �$` �:,.., / � r. ��_ � �.., 4� �'��'. ' � � - l `� / , �`=
'r: -r '�4�wF. d�5� ,�'. F t 1_.1. �i .! y'�i �.�. .1 - �
1 ��-.� ,+. s.�' - - F�:�.�.r'. �� � '�� � 4?'.�. .� �.i� u '7 l� � /
'i,` - .�.� �K. ��, r s k L� .w` �.+ ?� �.. �' i i•
�z ,.�"�Sr: a :� ` - .� : � � I ' f � �/,i
'i,. - '4 .. .� � � � }� : { � a �,.t `i - � = f� �� Oc i . t � ��.�.
, � ' � t
. . ... . . , <. •
I
't' +1 , a:.,. ��'! ..{
' �" ,�J
. .
, . , . �. : -., ��
�{� �
i ,,�
�
.
�
: . c
� . _ ' ��j,�
.
' . r '
, � .. � ,�, v� � �
� F . .a• � a '�'��i' .�+Y -
..C'. w. . ' - :i � ��:'n�. _3!!'�±'• .i� _ ' � R-. 'T7'.S :b �t,f' - r ��t:J.+J_-`D. `� 1 �";,
�'g .�i 1 .r: -'`,.It,,��. ��D/ �' - ' 6�, ,a� �i"'iY.�',�• :1�i4 �S,' 1 .'t � r.. --��'_
� � t i � �i�y . �- , � '�-.' ' W r,_. , , ;' -
,; .<� _� ; s,.. ���i��' E ' i.:
� .+�t. _ �z � =?', � _�.. _ a��: '-�' � .' �r ::.� i"�'- �� �.a,' � -
�;�. )>. �,s r.Fz�, �r- __ � \. �r�"-:ns � 3 '-�.� �.- - ,y C� ~� ':�, �1�'. � i �
:i: �,� _ _ -. --. : ?`-X� „$- i� f ,., � . � �
�j+ l�, R a �� .� f �, � F -
r `�-; Y x�^ .... � �: ,�s� i
.
L r,7 - : � ��-+.. �'t�l"�..�'•' -� iS ' _ •..�i'. �. t. y Q,° _ t �,y.
' _�j _ �\�-`C-. �'V+> ��A.� .i�-.i,�.��1�-! -�R"��-..�� �: - n3 I...:.I�� - '
� . r . ::.. ': .-,:
{�f -� y' � - ,¢�:.�, ��.. . . � . :.Lr . .. r' �n� . . _ !�l.+�� - - - _ � {. : r .,t < � � '
: � . . ; . . - . " _ -
� '- . � y�
-� �.�. . �s�e
'�- x� L 1: , --�-_ _ ���'�--:- � .. ,:=:��, .�..�� � ,��,r„�,w� tr� - - i =r .;:.i.. ��� . ��� <;��� '` --1.�< -
, : •. -: � -.�� •: :: --.: -_. .. �
'- _ -_ .}'? T� ,'a �y^i'�t�'r!a �' _ � ��. ' . �f. � f �+. .".a 'F.�.._ ���. ��jjs .4i j . 11 -.� f _,,.
� %r �...� . ¢ - . S 0 s.'st J { - �r� �� : r' � �
_ ' Y'�/ / K'` - ,�t- H� ..�
_ -'�v- .!.' :�.•�. 'i' r..`.� �.' � -1�. �f:=��� ..G'...�� �
:1• {rYZI' " _ ,!'� .��.�i' slii• �:l� - l.0 ' �7+. ��
1... - ��Es,, - l'� " - 5 ' � � '��C i � ��.:,'�T�..
.5� 5'� . ���� �- �, - �a" - -♦�.f�. ;�i �g `CO.s�j. r �yr^� � � 1 �.\` :,,��
��;t .�+�. ..� - �` ...- �l� L ';2 �i�.� ,ti ' � t � .r_ j
. �. \ . _ _ �:: - Vi f -,.i�_:3' � - .� . 5 - ;'�} -
n�tS s_ � i i i4 �- ���. _.'3. >� �_.{-.
. f 1 N�` y� r_'�-, t��f�� f W' ��_
�d +� \ �1 . ,�.�T .Y r_ 4'^.'w. �+�'t� C �.
� i k � ?r 5 �
. : ,.
.. _ " .
• _
. . .. �.:. ., . ��,� �j� �
ti1 �'� '-� �i'. �3 1 '�
� fe �. .. ... -� ' . � �Y.?l� .� - ;`'.. s.. ��'li J1`��. ' _ ��+f ' _ ' `:.� �
. 1`-.: ,�k � �' �a� � `��.. � ' •;l, r ,, z � _ � ��: �
_ - ��' �`" �.'�jr... IY . • � . �l - _ �'�-1
;1�' '� . . . ...'. ..:`. ���..
h� . . � •_. , ; , -.�� �_ s� : ... -., - � > ,� , s�. � . �
' „ _ .ti. .s4 � -r:•. ,«„y,il' .h. �� x. ';�4. �:, ,r--�,R+, a` �.Y'x.� �..y. �.
` . � f .
., . �ji , ,_- . , ; .: , :. _ � = s ''� g� Yi �
., � : � . ;r - x .� �'. - � ': . .:, •. C -' ri-M1. i - Ve -�� • t�'� � � uY-'�. i � /
�_ .L _ t... _ >.::' �,;.'.b' � ��•, � ,.:.W - ;�+I,• -r � '� ,.. •,'[ s.
, . a
-'., y b: r% .i: � ��c_ �'� � t.:,;:_ �� . .i� T. •::.-. -.�, . ;'� � yc� p� - !"- �� r�s T;.% j '.�� -.��'` _ . -
,?a_ 17 ,�d . � �' Ldu•.� , �.; , t � i .i, �� -W�.!_:? �> i. x � :�`t:-� . - �: i.
"a„ � 4 _ �i, i, i,. -�i t� �! a 'f�'�]JC� y� -a, a.. �_�- .�f j 1
: {{ � � . �_ �, _'� � .� r � ; 3 . � � .�. '�''' �q .^- - '� •, �1
i +4;.S�a. t.'�:"1'" _ ;:! r �� ,...-r ?�• o ..�i*F��:.bti u4.�.�. hk._ �_ �.�'�[!�R'SI�,��M�c.�.`- c.r 'F� i t� i;s�:' - '�a�
� . .... , • . � .:
G� �Y,-:' s _ �. ti _ r� � - - - - s J`� q i' � . S- 6t-,t - .F- N� � �.,?.
� .Z (..t '=t�.;y. �Q � � . . � �'• - �, .,� ��" �r-.Y -s+•:�i - - - - �.!�,� - f'� -i 1
�. .., .� ��a. :.-
TS3. '�"'Y. . . . � . . _Y S �' - - }� n.... :���3 _ ,4,'.' i f- r 1 W .'Y
-,,, •j ' .S'.a. ,} - � �.t -l= "'s3"''` . � - _ 'L ���i: �>' ^c'� +.�
�,t�i� � '�,�5, :y�. � . $+ cu'i5 ,.t
� �::; �. � '=L .� E 8TH T` :;.� _ �� >,.
_ _ Tt�%:-.� _y�'a::- - - . �S S ,,(- �. -�i° y.: '1 ,�k� .�:� :�.:�
` e`! - . . � C' A � � t -, - �•�pi. � • � .j'.. •� �. ! . �..
_t"T� l" _ _ . �� C � � �( '+� �} . . .
� �'•/: '!^ f . . - . . �.R.^. �\' .-� '�C� ..� 7- 3C. �!-,
H :: i . �.t_. _ � sn'• �-�'ti' � .: �� � �:� �'� - 1' T � "�
RECTIFEDAERIALIMAGERY ASMUSSEN ENGINEERING, LLC 0 625 �,250 2,500 3,�50 5,°Feet OKEECHOBEE, FLORIDA ��-
Map 5. Average annual storm water nitrogen loadings, Four Seasons Area
•
•
•
79
�
•
�
\
z
u
c�
0
�
�
z
U
Q
�
m
J
SUB BASINS
SECTIONS
78
1817
� '
�11TRQGE� LC�/�DI�JG LBS/�.�RE FROM STORIVti' F�4W
1AP 5 FOUR SEASC)f�� ARE� QKEECHOBEE CO, FLOF�.ID
F�iiregen Loading From �tarm Fiaw (Lb�lAcr�)
f�f
� e ��
�,�0
y
2.87 Lbs / Acre
2.88 Lbs / Acre A
¢ B
- y
� ; _ �
Q, rt r ,�i.�...� -_,- -
� i
i
_' �-. � : D
OD' - -- --- --- -
� K I H ;, 3,32 Lbs / Acre
m �
, f
� ; C :•�---�;-.:._.,,,;,� E
Q ; :-
� i � � 2.86 Lbs / Acre '/�.. 3.09 Lbs / Acre
� �
� 7 Q
M
� a Acre
,_� °' � �
; ci � ,�
� � I
UPDATED APRIL 2007
2.88Lbs/Acre OA �Q, �
�sI�1., .
S'�aL�G� .
��
�:.
,; �..
F'
,
2.86 Lbs / Acre
OY
2.90 Lbs / Acre
OC
3.24 Lbs / Acre , w
i
? Q E ' ; 3.04 Lbs / Acre �
�e2 -" --=_3.06-Lbs /Acre 4 78 Lbs I AcreF T
�b --- -- � I G �
s �
OF��9��� ,• ��' � 3.05 Lbs /Acre i 3.07 Lbs /Acre � W
� J � z
� '� �
� �
SE 8TH ST
ASMUSSEN ENGINEERING, LLC 0 625 �,25o Z,soo 3,�50 5,°Feet OKEECHOBEE, FLORIDA �=�-��.�
�.9e��.�
�
�
Map 6. Average annual storm water phosphorus loadings, Four Seasons Area
•
•
�
�' 1
� �
�
I1
u
�����PI�ORIJS LOADI�J� LBS/l�CR� F�:OIV1 STOFZ.� FLOVV
�1R�� 6 FOU�. SE�,SONS AREA OKEECHOBEE CO, FLORID�
�� �� ��,R�t��
------- --___.__�.------------------- __—:—_—,
24 --_._.___�---..._._�_�r..___---------._.,___------
22 __ ___— ---.__---_��. _ �_ _ i- - . , . _ �
- . _ ....-- _
: i- �
2 _ _ _ ._ __.___._� _ _ i.._ -' _
__ ; �
i �
- - . _ __ � _ ;--__ _
� l.6 _ ._ �_.__._ y__ �
� - - -� -�
p 1.4 - - -- ----__._.._._._.___ _ ��.r _�
� 1.2 _ __—_-------- - - -�� i
O 1 _ _ --� - - • I ;
'
d Q8 _ - - __ _r
¢ Q6 _ _ __ _ __ _ _ t -.
m Q4 _ ._ __ . _ _ _ _'. _; SECTIONS
—'a2 - - - -_- - - '
0 78
A B C� D E F G H I J JJ K O> B OC m�� 1817
SUB Bf�SI NS �
Sfdfe�
�, �.
�O
�.r
.r�� i
m
- i Q
N
� �
J
�
O
O
1.73 Lbs /Acre
� B
2.54 Lbs / Acre
'/ �B
.� �
� '" -
i
, _�,,,.% ,
1.03 Lbs / Acre A '
/��---_--_ - -. .,
/�
UPDATED APRI� 2007
� �- -
2.56 Lbs / Acre
``�,.. SE 8TH ST
• ASf�iIJSSEN ENGINEERING LLC 0 625 �,250 2,500 3,�50 5,00eet OKEECHOBEE FLORIDA 1���
, ,
,�..o�.��.,��
O
�
Map 7. Topography of Okeechobee Southwest Corridor, Okeechobee Co., FL
•
�J
.
81
��
�
�
�o
T�F
f
t
30
30 30
O
z5
M
30
2s
2s
0
UPDAiED MAY 2007 N �'
30 � �, s�
30 ��
�30'�— --� �
♦ +
ao W
�
s
�o ,�
-� - - - • �
r � �o�� —J
N
24 15 'I 6
„ p
�
e
�15
21 - 25 FEET " v `_ l �� '
«" �
I�I � 5 0 `n
26 - 30 FEET `� �^
N
O
31 - 35 FEET � N �r' �
15 �� N „'s
�� �15�
1s 20��
1 �/�� �S , 5
� 15 �ZO' 20
_�
'USGSFIVEFOOTCONTOURS ASMUSSEN EI�I�^INEERING, LLC o 0.25 0.5 1 1•Miles OKEECHOBEE, FLORIDA �'�.�-:�:
SHOWN AT MSL o H�� �
23
F L O R I�!� I35" '�"'_-s 30 25, t; �
ti,
��
30 �p t
`�o �,� 2'I 20 0��
�p "�O J� Nl
t+� �
� O �
o Jr
30 30 '�
30 30� _ , -
0 30
M � �
M I � � .
� � �
28 22 11 12 � �'
I �� N
29 ��
I , ;�_��'.
� I N 7s'�,..
Map 8. Soils map for Okeechobee Southwest Corridor, Okeechobee Co., FL
u
�
•
82
�
L J
•
SOIL� f��.P �� S� O�EECHOBEE ARE�
i�llA� 8 Qf�EE�HO�EE CO, FLORIDA
State H��dy %0
�EE /�PFE�DIX a, TAB�� 3 FOi�
S�I� PROPEF�TIES PEf� B/�Slf�
�Sa��� �E�EVifD
� SUB BASINS
_. RDAMSVILLE FINE SAND; ORGANIC SUBSTRATUM
_ BASINGERAND PLACID SOILS; DEPRESSIONAL
BASINGER FINE SAND
�',�''' FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIONAL
� __ � IMMOKALEE FINE SAND
___ . MAnATEE LOAMY FINE SAND; DEPRESSIONAL
= s_,. MYAKKA FINE SAND
� __:' OKEELANTA MUCK
0 PARKWOOD FINE SAND
�t RIVIERA FINE SAND
�' .' VALKARIA FINE SAND
WATE R
'USDASSURGODATA ASMUSSEN ENGiNEERif��, LL�
� \
,
29
UPDATED MAY 2007
9th
1
21
6th �
� d'
20 � �'
_
�
�
State Hwy 70
,=
--- � � ,
N
�
. . . � -.. 7 :: ,- �. �:
22. 11
28 ,
,�
.��� Et � �
�;;.;, ,�� ,..
r h��;
{ � 4
- �l' {` . � A�i
4, _
12
���`�' 15th
16th � 28 h'' 16th � - r
N
� �
i--
30 14
�- 23 � �
- 27 _ - � "�� �_ �
� �_
F - - : � _ . �. 28th � : ;.�
� ��,..- . , :
3'1 .� ,� '[ 5 16 g-.
- _ 32nd ��
t�
_ �`
�.: 25B �- �.:.r �. : ��
�.k z� , . � : ���g � �'
� �
� . � _�.,� 1 � � i _�. � {... y��
t�r e { , - -- - • ` t �* '�rn
y�t 9 n �' .,'. ; y r�� I r
" } f � _ J . � i �c .. . . , ` �� t�1 �..�
� � � t4 ��-
, Y :+L S' '< Y i li' 7 l�- y7 5': � L� f�>*i=�(/J
, � e.� /� ` _ �, 7 �
26 � �' �L5f1 r ` � 17y � y � ti` �Q'y�� 'k
F • y Vx t
�.��. . 1 .- i•l :♦ .7� .��/ �.
_ � - ,
•` � t '• T T t � . � � Y
�
t �, � ., f t FY -� . � �.1 �
.: � �5 - -� � 4y� > � .
- } .J �. ��. h �'f
� �� + � � �a`+t�r�C e
t i .°� 1 � . 4 `�[~� t � )`` 1 �l'1 : ,'Z t. .c v ""'"�'�,'i}"��r�°"�'.
� �� _ {� . .;' 4 � � '`. �jv ..i�'
',Y
_ - `," . '' ' _
J �� K
1 t; ``Z•
. . .._ ..�_.
0 0.25 0.5 � 1�Miles OKEECHOBEE, FLORIDA
th
r'' �
(.O!'„'
��:�
N
�
Map 9. Land use map for Okeechobee Southwest Corridor, Okeechobee Co., FL
�
�
•
E:�3
�
•
u
.�4N� USE IVIAP OF �V�J OKEECHOBEE ARE
IVIAP 9 OKEEC�OBEE CO, FLORID/�
State Hvvy 70
�EE �PPENDIX D, TAB�E 4 FOR
�/��'D-uSE PR�PEF�TlES PER BASIN
*��41V6' US� L�GEIVD
� SUB BASINS MISC AG i _ RESTAURANT
BEAUTY PAR NISC RG SF RIGHTS-OF-
�_ CENTRALLY MOBILE HOM :____ _ SERVICE ST
CHURCHES MULTI-FAM SINGLE FAM
� CLUBS/LODG MUNICIPAL STATE
�__ COMMUNITY MXD RES/OF �_ STORE/FLEA
� CONDOMINIA NAT PASTUR �__ STORES/1 S
t—�
� CONV STORE �; NIGHTCLUB/ _ _ SUPERMARKE
COUNTY � NON AG ACR �:•^ THEATER/AU
CROP III �_ NON-PROFIT UTILITIES
FINANCIRL �;� O U A �_:.�; VAC INSTIT
' GROVE W/ S� OFFCE BLD VACANT
'_____ GROVES,ORC �; OFFICE BLD '; :'� VACANT COM
� HOTELS/MOT ;�__ _ OPEN STORA ;�F;�' VACANT IND
IMP PASTUR PK/LT RVMH �._ __ VEH SALE/R
��_ INSURANCE � PROFESS OF '__ __ WAREHOSE/D
MH PARK PRVT SCHL/ WATER MG D
i MH/RV PRK PUBLIC SCH
I� MINING � REPAIR SER
FLORIDADEPT.OF ASMUSSEN ENGIIVEERING, LLC
REVENUE USE CODES
29
16th
30
31
UPDATED MAY 2007 ��
�r.
T4
. 3�
I
9th y �
-- ;— —�: _ — — s ��
.. r I.'. (. , J � ' /l , �
�� � � �_ . , � - -
6th �! �-'' �-
yc ���
�' 21 �':�' . �C �'�'�
� 20 °' � :� ¢-� _ �
�, . � _- �
; _,
- ; � �� � J��
- _ - �_ • i ; - � � �' State �wy 70
__ , ' J�,__- L � _ � .-.L.
�_ - F'-, - � ---I
� - - _ ;�� �--- = th
_ '_ " _ii!" ;_�
i N � _ . _ ,:
r - _.
�2 11 12 '!
28 �'
28th 16th
� i;
1 ,
�
^ i 15th �
i
° 23
�J F
2! x
i �
J.
` � 24
26
25B
25A
F:'f-
�
� r
'I 4 pi
13� �
'_ _, _ �
15
32nd
��
u � %�
_r
�
�
17C
� ,
28th�
_� ; r
I � ,
1 �.,
. �_i��
�a
d
-Y-�
,�. -�
�—]
c
18. f ==
17A
t:._ ''
i
0 0.25 0.5 1 1.5
Miles
OKEECHOBEE, FLORIDA
�,�
,�.ob,��.«�
M
�
Map 10. Cover map for Okeechobee Southwest Corridor, Okeechobee Co., FL
�
�
�
84
� V
�4�_�^' Nilf'TKI�w�fi.N{I°'J d4Yi I H I �-'� h,� t�E. i. `
� � 7, z�C�'�, �� ��vy .f o
�t_� . i�'" !.��t:fi'�'�w.l"4 � 1 � � iT'{�6�it-� ��'y�.._.t..
� ''�1i vi/�t +�j.`r'ri � aa.i n �f'1�'!� �•
'�" 4 1���?1 %d ,*� `4�J .R'����e;
� �-��i:: 1 * : i , r. �� Cn (t:J � � �,
�.� , .. ,a.
`°,4bb"�MH Sflrxr� � .0 r !�� �._:
s . d rT ,�'p' �'�� >m � � �a �� . �
,..y t�a i �•r, r r,wr ; i �?L T, cc a.-
��..�ql �I����MLR � tJ' u� f�541.' T f'1��. :
. i� ryy�
.r.i'���,K.�'1c4R`:Fv-'fP�.��-� ,.Iti �`(T.w. «i�y _,.,
'� � ' r. .' T G .r' �
.�` . s
�r'. �
�f�" i �r�r �'��1�, � �
���s d ty � � ;,;R
�v s.'� � ',�t
�i �
�1 � '� j �1�I�Y�1 �. :�. M � ; r h� , . � �Y'
r� IT :' I e-� ' +� ;-`` . �.� {��
r ��, a , x�i .,�1�l.
�� �.lI� ��i �� ��+ 1
��*� . .� �4'a",�;h , 4,`C�� %.�,' i!��(�-i-��:..'�4 .f ....?� `,
i+�"�""^"��ryl � .. ��I �: � ■n '1�` I � �i�. - � -���ti �
�ti. i. I �,c � ���` 1 � " Lii. ,UJe�7Jf j-. �
. . L 7"T��';. � � I,- .. �!4� ..
t1'.C��rA .�.a;� c] �i�,}" - ,�,' ��' �.�ti �; � . �'-y� �� �.�
., �?� � . o �'7 .r � r -��: � �. � +., � s�a:d ` li _� �� ri;.�
rr;:' r; -`��y�r�,,y-'�d �,�86��(n.n�+�H�YSfllx,�JR�;�'�,�': � � �86'�(nnH s�T���;:�i�
�.�,.1 4.�bl�t,'N:_ i .�. f I..c+'.�i��ilf'S:�I � r"i�.q� � ' � 'i,_.��.�. �,{��
*�-F�� ��rI,�T���f�{,� :'�'��� ' � �7 r..���,�
' } � �`' � � 1 3 L �°'s'�"-i �;7'�st �, � ; �� .
�f�iq`�7�'"C1ih � � -' � I�
`j� iy: f��y"�� ��J'�: �. �''r., NI �'' 4 r; �, � i. :r
r� Irz �� n � I g j�` ��f i t:, ,.
�'7'ir�i}IG'�t.t�t^j�,�.a � �� ' . - 'l._ . i F7 ��+�.:
�,�.�, ►
`}`�t+ t',�°i �"�""w �` U�L'� � f � c:.w. y t� i�. L i v
} � i� �
l� �� f z ra�d�`��.,^�: ti L J 3-. � I � ti.� n l! �
�� r t,�usN�j� �' i wl� �_ it .
�yJ n�� f �
i�,��� n�i 1ai^N��'iJli+.L?it .�.��� �J.LL,aw �� i�trr+�!' /� '� �
�rjKf•-ir ^� ������'�y�- �r N .- � � ,:+�'rr i� 'w�'ri,�
i� �`��! �
!S�' ��c� ����i� 'r,+ i�J m� �f '�4 ��, rH„ ��. M � .:,_.
(Y�'�.� �_g_�-� t��{`�,,��,�,� y' JI • 1 f�;. � hr+T L F�'�L-�:-, .
.:�S��.w� .L2.tirr� �,�i�e.2 "'�C'._�,_ .Ri-� � '- �:�.e,��daMkl�iSlwll4�l''.i.,
� �fn,�.,' . �q r '-' r+ � �rr Z •-� �.,. �;. � ,�."c�"'" ^.Y^-t. F � .
c� ��'r � ��"` r " �,1�'i'id?}�'r f r^lirr 11. ��ir + i' k '" �
( �
J'�i i`'� � 4-5f. 'o� �,r.,F..S. m' i � j ; r.
t
�M ,-i��jii �IK, . �� ., �'.,17}� ', �' � . .
�'ti �'1 [* �� � • t � �'�� I'. ��� y� c
F .� I� �``� �, fi-;5 , , �,r� ; rr— � ; L ���
,�u f i f ,.�r. t �, ��z .�
�� ^ Sy+�„��r,�tj�,,F7�4�i� .:g�'�` i��= ,sp.�,i� � "�° i �;� P"« �
��r�r��' ���,,,�r�'��ap i"'��'�� ��4� ,�s"'�!�"°�
�. 1t }.. J�h�. (�S { i•� T � A r i+ \ I
L.>.., b"� �• a rf a.r a�> > .dcJ t�rl i IF �i T ' li 1
7}. +� i � M M^ _i �
��� 4 .�itVZi}�a ^�, rT/ t�y�.� 4�7 �'.�a t , l� Y�,f7 i�� � l l
�l:.a ,y � V �� :��i '�7�' .t4y, j� t��w � ,' r�Yi �� i:,i.'iti.� ��
`��Y 1� ; � C i t��F", �"� - - '�
� ,
����� � �:� • r��L r�*�.� .���*�Y� ��jl
1
�'-
r �
. '
a i:
:. F'/
� '� � � N'�... an : `� ,,.� I I . �� �� i i� � �.i� � ,� .+ s a;�l ���r.- �� /b9�+::wv.. e��f t�.. 7 �� r .ir- � II � ��l' �
s �' � _�, �':fit �,,�;il'=' � e#+� Jrr .� .r� +! - .'� .l 'TM � k . . � . , �
7 �
�j :; , v a� i � �- , ,. r,,, ( }"+� � , ,.�
1��,; . k•� i� ��.p'"��`,� �'wi� 1 �.,.. ' � �k�''��i�� f� ��;����k'` y!w i b, ti �l. � J k .,:� � �1 ; �r � ���l.7� t� �t r r�A
i ��` '` • ' �Vw� ` � � , d Cr� �9T ��� . r. +� . '�; �l 7 � �L�� i. 1 t � ' � S �.' 9 k�c:.�wy � } �r�� r*-! . � F a'+ �'(� .
I, �.,p 4� �'�aT yr� ,.r ��,I� « ;�l.t�,{.7,_�'t�:� /4 � �, c ��I(SfS� �r �;; ':nffk,, �,S��1 }. �..
�!,�� 5,L�! t�t7i ,�, 1 �� ,. 4'R"�:: ' r � N��� ( j��r lY1 � + ' I i, r �-._ t r i)MFF.` � \.
? r Q � �, fSl�!'�? ;`jG ' � � `s,.�i �. �,��'h nT �, .ty s^���,,,.�i�J�� �•*a�t,��. ..+: �� � L .� ,: 1 � +���..� ��:�n� , �, ..:�,'�.�� ��
�1 � . m t n � �' ,r� f� 1F.F',n r; �. :r * -. � �T F Py� i1� t'1 �:.� � � .. t' ��
� � !'-rF, .�' � : .. �. . t tn.. ; Y �r'n . 1 fi- �.F, a'� � '��_ �� �: ,�� �:�%�
�t � � �,�;}� S�i..�.c� �� 1 � C �i j ,.�I �h,�Fr��i �•L�74�\i' r�,�r��r�'''rs. �'�' ,./ I �'.; -��� kf'�� �: �iiC-'��,�
� � .��:t� � ir � � �-�I . r y ' .. t .l �.
}�, � �.b � 1 ,ft �sr�F � � � ,�'r:,,,�.i.; A� FjrS t . {�4 f. � �� � .� 4 '',�., '.y i +. *` .
,"."'^ � � �%�.��1�1 1u-t� ? ._ � r;., ry � �i�t� � i �'.� � ir�� ker! ` �i�� ��� 7. � �� n � �i7,.� � r �
�F �P�:1..U- y. �.� -'a �i `:� ..G r � � � � ^�.�,'.it�... � � .� elfr4'I �✓C,� �"�y� � E_ ..T� �O`"�'�
�:;� C q �:, f .. Y��.t. � ��-.5 r G.YEi� ih.f .. +'� ._ys,.i . - � --:�
!� ' w ._ I .1'�''ii i:.. U 1:''.c. !J �*"fN', � s'�.i 7:7t}ir�,+kr,y-r�';� i � 1 �`�( n, . �;i���a .
i. r � Fj�� �.�' �'.y�ti 1�-� y ��L� � .�,�'/' - ,r ��a`,'c'��yky°� ;�Jr,-�e•�'��r7"� . � '�n ,�� �-. .�,.5. - .,'�'MT" �T� •
� O t E �n��fr(�,�j �3��; Y €';e �" .�'�nl .GCoF � .�Y'A� iT"Yrac7�is'�' � :i ,� � ��,�"� ��yt,.
..li �j � �, � .. �.Y -ft r^ � �..
.. m � ��'7F1.. . �f f�Y+E�'�' �� �} �: i �' a' ° �� m r�+� Y�� i1�i ^t ) a Y"l, 3 . �. � � � t '�S' .N �i
,�'�. i„ � g ' t ,r -f� ': �U ' i �� t ���1.�-. ���'���lK�V�c} cc.�+� .� . G w.r � .�� 5 k..:
- � -•-• ' �.j,, Yo*c ✓vhy`�� i ��' t.,'„" -.'r,.1Cp ��'.4'ci���k'��+; w � r :"���_'� '� �.i. .�vY.� �T "'�t:'r � .,`
O I �'
f �i �, S�. ix" � r.•` I � r ��v`�'�' �1n+�l��r � a ry�� n c, t�..r• :� 1�� r
2 f�
���f !a�'��w n���n f; ' �5�� �rY� �,ye+'4,%I�y�i��,,.,(`%'�f,�,,��,,,s5��=. ti �-t � ,!,: :�''
� �
O f °� � � , t �, i?��''�v � t�,. 54�rs''t�f� a`:' 4
� �� ~
� �
A � ` � �
A « l �K
a rt :,�'.t �'yc'1���31 � � , �. �.1-
'`�. � � d'l'f ` a i w��� ` � lr
e � 3 y�l y �Y.. d` i �ir . ��.
r, �,� ��?`.�'I' v�" r � t:u. <
i` . t� �,�y.�+,fi.f�, �.
a� ,
b .rl� � �-.. � i� � .
Q - S, M{•l�����
r'�t� :
A �rr�
A � y1
� �!(� . ti�,.
1 ��yy'�,� .
}�� I�` .� ; �.�4 �'
� ¢�► �:-, y
� � �
4
� p�-�:'�@ �.
..�,�,y,n,� � c
—� - �.
�..��i - �
�� '.� ��� � .s
�� f ,
,�. �'y ` -",+,5
�"t a i _ .:` i ,�'}��'�yr*� °, {' � . �}�k;
� 7��. r y �,�t. � r: �;;
" i: i � ��;:f i' k� L !.
� �A.��,� i ��� P �r� �` 1''-):.
.�( iL :SIw � YN�
L �. . � �'A r.%
1 y �
i i :�'r ... � '�"3 - �
� �,{fF a � .�: -� �: �.
�� � 1
'q 3�j
� v. �
�.`. �l ^ �� �`�
� �(� � .
�
ii :� i�y."�
3t`� r' a' �'.d'-�..'.�
�I �
4• � .�.,� � r"
�4,Qy � f, /t' y�,` �i�,�' �-0
Q
Eh r=,� ";� �"� �'� ,
�� �� y r ��� -
'1 ;, f..s_: • `a �.
d= €
�= g
, �{. �
rii �
�
�
L.i�
O
�
w
O
U
W
O
�
N
L!� G
r �
:1 Ef�' / s.+ '.�F ;fp �..
w " : � 'j �.�.
4� .
�� F� _ II..;.
� , t �" -
�/ A J �
.o ..- �. `I�
,�, � , _. . __._� . �.
}:Y , _ ' . . .�.
� _
� (�'`;�� ��yP � ���� �J
� ( , :1. k ,r [r�.�,-�F � ,.� � �.; . t � r G .;y� i �:c;�` �'� °o '� } �7�r�yli�� i v�r : t � I f� � I.,;
� v U� i I�t t � i .• a � 7 t t t 7 ,��
�,� `� }'�;*'-` , { r v $� • Z��jr :!:�'r „wr,��r-< 4r�i� � • r ' r �r.�
�:L. �J.J r �� � �' �.. . �(;� p R 1«,'- ��a, �.r�,,it, .� � .. '>� � ' � - �+s,-� ; n•
� ^ � f� 5 y., �."�iifA r :.7:Lr�i t��.;,jp, � �4,��'�7i'` ���VL'A'r-C;I��,. -• ° � _�" r .- .�, : _
4' w W F 6.� ✓� F�., ,� � f/ f Ar-- ' :�, . I
�,�.; � rirl f.�:� , j��� ...rFt k ` `.t ,� "`-�yJ ,��,.L r {r r ri � s.- ri �SiJf;�y��,��' i�.��`�; �( -.. a '�+�,�� �-�i .+:c �' -
v i.`. � W � � f+�i'0�. �' 7 A�-�e �'�` °� � p�+�y'�w •��,yi� � "�r F .E'vtixunt � '� ♦ . _ er� , s K "�.�.� �`�` i
-, �M ..�'���� ' . � � �a�'�.�¢m�� f�t�',��„����_ �}'i��'��j���€��pN� �'_- ;�t��J�� � °�� � � �f �:� .
I..LJ I � r_ .�_f,� n , �Y ,
O..p, t ` ��0� i � ` .� � .tT�jcRi y��,�t �4 � � Y� j ./� f�. � .� .,. 1 ,��' 7� _ °� ; � �q -�' y � ' 1 :.�
.. � T , � '" � . . } � � "J� t .'f.,.,y�..,Y+ ," �„ / � . .� � �•ti ,�, � "`. ..:. « q' � � ( I . 4.
T
y � �J � . ''' �, f, � : 1 (. ' ( � � � � a ���
'; I � 1
�I
N
O
� � .. �, 1 � ( . t y^ ,�r � � . � _. ) r-.�.., { t'f" � � + � c : 1, .A. t � 9 -cr �-: , I �- I
�� r
°. � , 6�+' �- ,� .. ,� -�+--� s h x_ , � , s � r p
� R�4 _
f ,t-
�-. � '�p _-'7 ... . �,' >��� �� r' C�14ij�y'cu%�r'�" �.o I ��F' �e�`. � i � �j1' '�' a �� i�
1 �
ft :�, l ✓;;. � '� � . f �� .�'� 1� "�;���j.• _ r' _ � � � �� 1:. m4 �Y �i
� O � �0� a, (� '. �. � � , � , ; Q-�„�� 49 �' .f �� � � y Y �'' f1f `v e� � �
� ' , . w 7 �" �
.i I.J� � ,= i� ��� �._ r . ` � y � ''Q • p� , ` t.'.. , ,�
O � � ; . . .� ,� - � `!e '�R � ,s�i � �,y1 . k �1F "� .. �
Q � �! ; � , � x�.� �� �.._,�
� �. t.'��(� � ° � ..., �+ � I � �t� • ^ •'rii . y �M 'I'�f`.�' Y� � �'?� � � K �� : �.. � �', a � :
� O � '' � r _��'s :�t�; ,
1� ��.�_a,�'jj`' •:e '� .e �,�.�d�� � � .j , �;r� ��.
� F � '�yp �,:! �.. . ' f �����::;:�: � � ��„p-. r ��� .._ +�r _ - : � � . . �` r"s � �i;
��� {`_ -
� ^ �' >, �" ..��b,'.Ws- � .2�,`�°e4!x�¢:��T -} ' ° � ;;
WI..L I ��.� .� Stl�� �r x.� ,� J y yi�x a i.-r� �r i: ', I jI i ��� .r i
G/1 �, �d� . '.� . �'� �`E� �yS4�4u� �I � � �
`,i i�.'. .:�i ''� :/' `+' �..+{�a. labr'.i f i � :�f� I . k.+.�'�i
� � lh
t� . � ,
\ �t . � r!: ,1 .q�: :wl�s.I.,,,.
.�i .. �.vr . �
. k
F�
'�r �.���- . . M����f ��!• � .a. �'i I I ,-.� - .:..r„ ��,
�����' � S � , � T �i ���P���L� _ � I .V . '.I � 4 , �:�
y�f.� O G.t:w�' I ,1 � .�` - tl ��,�il"i_�=��' _/ _ t"'� �.
�-�. P E, '� -- ' �� �p , � "� '�F ;
q �p � r � t Y' 1� •. a. _ . ,_ . -
,�"r[�3 " �t. �i �. + f �'.. i,-.ii ♦ "' +l �, � ",���� �\ \ �, �.. �;�',� ����,
SR � �. � �n� ;"�.-i. „+a Y �. � ! . f�, f � � +' :
_ �.i r. t 1 Y i1t I� '�'{ I � .+'�, tt.,,� ry .�,� "F`M.'�ySp idi i � �6 1 f .�4
r j�c L.� �y : t,. i; J,` iC'. f. + i r �h:
Y '"�.Ji I 1 � al!'� � j - _ti.. _ d! !� ' ! 4"� r , . . t � 7:�ui
� J � ` { � � � t�
a�r�
�+�� � 1{ e; §�I� I i.
ir; i t -�-� ,�'�- �. � J � U
( ' "� %--` — _
' ; xrt- � I a -�� _,-x � .
X�? ��+'r^! f ' �+.+�
� "
I� ��' �- �` �r
x "
't�'�.'�R!'�'a ;� r � � �. . }. �:,
1 �C� I1 h
1�!
� ?�'�
t � � •
� _ "� � - ,4 .l; t:.
..'= � . ._ .. . ...-' �a'�.?F��, 1 .
_ � } �� i _ � .� s ',t� � � . � , ` ��'4�c
r a. I .� ,yi�" tn `sw t'r J � h • I�,
k 1 , �'�tt r � � 1 . 1 � , 1 �;�. ,�} �as'� - � ; � . , N/ ,1, .
�. r l a^I i, �r . 'i1 ' . � .M �l � :, , , i ;
� �. .,, I ` r� Y , y � C , L . . ^ � r � � �� J _ r I P
'�p � 2f�.?3.j !, i � • at t
+ .�+ . ` i'�' W K � �' �'. � ;�. � j f ��i� - ` ;y - t � .
ll.i,. ♦ � 1 L . ;' �� � Gl `\S.C'�`�� ' �'A a .' _ .;, � . ,. � ",��� fe �, .�,� °i .t, .� /� /
' 1 �,, •t1 r:p� �. '��T ,.' ,�.: �,
r
d
� ���i �
,,
�,,,
, ,i ° `R' k' i �I : ;rF� � ' p � c-. ,r, � t � ,��' �
�i ��r�� i ' , �,,�:,�,,.�,. , � �If �' t% � h� (n
� yr� � r` .r ' � } .s v.i 4 � y,�� � � .. � /��.Y'�,' �' z Q
� }�� - y - �r ' ��k yi�q �/ ,.:��� � � r eti.. +}���bSVr� ._. �I� (n Q'
� `
:, ir } 11,`�,��! �-- 'r ��`� ,� �n u 4r :' �I .IS9,yc �y ��, � ,ff Y � (�
i , s ' � ��: ,:1 a;w � Q
� , i r-� /r r. a� l ;. :�`��x,,.r-�'} � 5 �' o Cp Z �
� � �' � � ' �` � � � f , j ,; ' t y.+�-'r'��' � ' �
� ` 1,, � Q Q
� :' � I .� � j { f J''�y,t s-.J � =t '�� ` �l - T� �,�' t.': LN . .� a �t"� �. �._ � � ^ in U �G
�` v � � s-' l, {.� � - i �. / ,
��:; ak ���, �' _� n r 4� F�.}. . j'4�vti � �/ �, � f �
r+ I i'�'r _ -�s �' � � � 1 �Gi � k� a �^ / � � � i
� � � `i4�`i �{ �r .,.ewriC ..� . :_ r Y����,j '� .�h: ,,.{'���`r�.� �, } J � ..
� " � �F14 �� t � '� �'„ �" li f�t\'� 1 �`�' �(�".- . .
��� " --'r '_ � I _- � .� ��.
:. { , 1 ,. ..I � I t a I 1� '�r , l� +r�ir• ..'�� i;.�.
P�
� , � .' t '..""" � r� ' � . it ��� � . � � � rz,� � ( �,'.� :�' , �
�;�.. � ':. � ,. . _: .�6'y�qy �� � ', I - e . � 3 . ,F a
��p � � r� � : r - y
14 ✓ :,,y�� .V
ti "1 �r ury i �'.�l"�'��9� .5'. _y� cns "��� .� �..� � :
� � . . - j �C'rS � �� t s � �: f'd� � S� ,��-. �� } ; . 1 ��
�i . ;�.. , !j � ' tki
. . :5`.'r:/ ;
J
J
�
Z
1..�
W
Z
v
W
W
vi
�
�
Y l lt��: � :
/J �' �M {14.�i^� f O
W�
�j ,�t 4•f�w- �>-
ti, � W
� � �� - .r Y 17r � C7
� �:� e ";�� ��� W Q
�'�'�, /y� 1 x �
� dL��y,, . `'r' /' l � Q.
f *=/.'i�l� � �i.� F- W
� r �''i i °o"
ry � ...r � l.�l��. LLH
��� U
� �9 A ',� � w
o�
�._;i � i, ::. o
� • s
"'�."'*l1�7'�.� 'sR , ���_ � « _�
w,�.� f , Y �
)., -,..... . --�. ��� r� � I
Map 11. Average annual storm water nitrogen loadings,
� Okeechobee Southwest Corridor, Okeechobee Co., FL
�
u
85
�J
�
•
I
���'�QGEF� L��DlNG LBS/AGd�.� F�.�I�ro'� STQRi�I FLOW
iVI�,E� �� �V"�' OKEECHO��� �C), �LORIDA
State Hwy 70
�
LI
� ___
d'
NFtrocxn L.oacirx� FrocssStormFiow(Lts/�e)
�S�USSEN ENGINEERIN�, LLC
28
2.47 LBS /ACRE
U!'DATED MAY 2007 �'
�.
_
9th y;
- _ - _ _ - . ; �_---� — �
�- �.� ,, . .��.�. _ _ _ .
'. -� ". ... r 4���4^ , .
w � €. > Bth � : . ' �
� v
,�2`� . zs! 5s; cc�� 20 >`
3
i 'g� _
� � L N
� �
�` � Park State Hwy 70
_ _:�..w.,_.:... _
-
�:-. � � ��-�,�•�:�`_�r''�4th
� � � �'r�" ` � �� c
�� ` � �.
f . j. � ..
• �,.11�kj�•
i �
22 'f 1 � •`` � , ') 2
3.61 LBS lACRE '� 3.79 L65 JACRE ` 3.64 l6$ f RCRF
, 29
�� 2.40 LBS /ACRE -�� . �
�,�:-
�I . } `. �'' E�
' 16th 28th 16th L 15th t �
` , - . _. . . _ __. - - ----- _ _ � _ _ _ _ - -- - --- _� �_ _. - �'
N =;
w �(
�
¢ � �i
� �
m
J
� 2.77 LBS /ACRE 30 m 23 13 � 14 1
fV r
' 3.04LBS/ACRE II 2.78LBSIACRE � 3.14LBS/ACRE �
27 i
I �
I 28th {
� __._ _ _. _
- _______ ______ _ _ -- -- - �
� 2.09 LBS 1ACRE 2.38 LBS /ACRE 2.37 LBS /ACRE � 3.81 LBS /ACRE �
31 24 'I 5 16
1'• --- — _ . _ _ 32nd
_--- - - __ _ --- i
_- -
- - ---- ---- _
� 2.41 LBS/ACRE �
� � � 2G6 ,, 3.45LBSlACRE i i
U J ���
a
i � --- -- �
' c! � I f�
I F
� 26 F
, 25A '� 7 C 3 03 l85 / ACRE �
' 205LBS/ACRE a25L'nS/ACRE � H
i ��� �`
� � 2.11 LBSfACRc �`
� 17A N�
'- - --- ---- - __ ---- ___
�
� 2.45 LBS /ACRE `, 1 '
�I 19 5�atie
` `�� _ .
0 0.25 0.5 1 1•�iles OKEECHOBEE, FLORIDA
-
�-:
�.��
o M.��,�«or
..
Map 12. Average annual storm water phosphorus loadings,
• Okeechobee Southwest Corridor, Okeechobee Co., FL
�
•
86
�
�
i
•
'HOSPHORUS LO/�DING LBS/ACRE FROIVI STORIVI FLOl�
IVIAP 12 SV1! OKEECHO�EE CO, FLOF�ID/�
State Hwy 70
�
�
�
PF�honis L,oaiing FromStamFlow(LJxJAa�e)
z:
zc
�
�
o i.s
_
a
�
0
x
a
� 'I.0
U
a
C%7
m
J O.S
0.0
SUB B4SIN
ASMUSSEN ENGINEERING, LLC
L5H � 7C 3.03 LB5/ACRE
2.OE LBS i ACRE i 4.28 LBS lACRE � S
f ; �
, ' oi
.`K� �
{.'-_'_'_. '__�
' 7 211185/ACRE
"� 17A �
� �
- �-;
I---- � - �
��
� 245EBS6ACFtE � ..i� �._
- - . _ .. . . ��
0 0.25 0.5 1 1.5
Miles
_ _ _ —_ . .._ -
28
2.471B5 /ACRE
UF'DAYED MAY 2007 r
9th �,E,
_ r . _ . s.���
_ -_ _
�,.- ;y.�r•
.: T„
.riz.,�lr.t�
� � �tn � � �
�, 21 d z5 �6�,A�n= 20 3
�.. 7 T
� _
m � �
� �
I � State H�vy 70
_ ,�---___ _-- -Pa rk- - -- - -
�,
Nj
T i
�
22 11
3.61 L6S lACRE . 3.19 LBS /ACRE
�,4th
12
3.8;LBS/ACRE �
OKEECHOBEE, FLORIDA �:�.�-
�
�
•
APPENDIX D—TABLES
Table 1. Soil series by sub-basin, Four Seasons Area, Okeechobee Co., FL............88
Table 2. Land use by sub-basin, Four Seasons Area, Okeechobee Co., FL ..............89
Table 3. Soil series by basin, Okeechobee Southwest Corridor, Okeechobee
Co., FL ...........................................................................................90
Table 4. Land use by basin, Okeechobee Southwest Corridor, Okeechobee
Co., FL ...........................................................................................91
.
�
87
• Table 1. Soil series by sub-basin, Four Seasons Area, Okeechobee Co., FL
•
i
,..
•
❑
TABLE 1 SOIL SERIES BY SUB BASIN
FOUR SEASONS AREA, OKEECHOBEE, CO., FL
SUB-BASIN SOIL SERIES ACRES PCT
A TOTAL ACRES: 215.00
BASINGER AND PLACID SOILS; DEFRESSIONAL 361 1.68%
FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIONAL 4721 21.96%
IMMOKALEE FINE SAND 118.30 55.02%
MYAKKA FINE SAND 9.10 4.23%
ST. JOHNS FINE SAND 36.84 17.14%
B TOTAL ACRES: 120.00
FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIONAL 4522 37.68%
IMMOKALEE FINE SAND 3926 32.72%
MYAKKA FINE SAND 1778 14.82%
ST. JOHNS FINE SAND 18.28 15.23%
C TOTAL ACRES: 62.00
FLORIDANA; RIVERIA AND PLACID SOILS: DEPRESSIONAL 22.16 35.74%
MYAKKA FINE SAND 39.42 63.58 %
CC TOTAL ACRES: 12.00
FLORIDANA; RIVERIA AND PLACID SOILS; DEPRESSIONAL 4.14 34.53%
MYAKKA FINE SAND 2.71 22.62%
WABASSO FINE SAND 5.�8 43.18%
� TOTAL ACRES: 79.00
FLORIDANA; RIVERIA AND PLACID SOILS�, DEPRESSIONAL 4.05 5.14%
IMMOKALEE FINE SAND 6.49 8.21 %
MYAKKAFINESAND 6698 84.79%
ST. JOHNS FINE SAND 0.66 0.83%
WABAS50 FINE SAND 0.39 0.50%
E TOTAL ACRES: 141.00
BASINGER AND PLACID SOILS; DEPRESSIONAL 2.94 2.08%
FLORIDANA; RIVERIA AND PLACID SOILS; DEPRESSIONAL 924 0.07
IMMOKALEE FINE SAND 30.15 21.38%
MYAKKA FINE SAND 53.68 38.07 %
PARKWOOD FINE SAND 3.31 2.35%
VJABASSO FINE SAND 41.80 29.65%
F TOTAL ACRES: 146.00
FLORIDANA; RNERIA AND PLACID SOILS; DEPRESSIONAL 34.47 23.61 %
PARKWOOD FINE SAND 18.92 12.96 %
WABASSO FINE SAND 92 91 63.64 %
SUB-BASIN SOIL SERIES ACRES PCT
I TOTAL ACRES: 103.00
FLORIDANA; RIVERIA AND PLACID SOILS; DEPRESSiONAL 6.62 6.42%
IMMOKALEE FINE SAND 18.81 18.26%
WABASSO FINE SAND 77.80 75.53%
J TOTAL ACRES: 39.00
BASINGER AND PLACID SOILS�, DEPRESSIONAL 2.06 5.29%
FLORIDANA; RNERIA AND PLACID SOILS; DEPRESSIONAL 7A0 17.95%
FT. DRUM FINE SAND 8.46 21.70%
IM�J�OKALEE FINE SAND 12.90 33.09 %
'✓i,'ABASSO FINE SAND 8.48 21.76 %
JJ
K
OA
OB
OC
OD
TOTAL ACRES: 3.60
FLORIDANA; RNERIA AND PLACID SOILS; DEPRESSIONAL 029 8.15%
WABASSO FINE SAND 3.33 92.46%
TOTAL ACRES: 66.00
BASINGER AND PLACID SOILS; DEPRESSIONAL 478 7.24%
FLORIDANA; RIVERIA AND PLACID SOILS; DEPRESSIONAL 4.46 6.76%
IMMOKALEE FWE SAND 20.87 31.63%
MYAKKA FINE SAND 25.03 37.92%
WABASSO FINE SAND 10.62 16.09 %
TOTAL ACRES: 235.00
IMMOKALEE FINE SAND 234.75 99.69 %
TOTAL ACRES: 270.00
BASINGER AND PLACID SOILS�, CEPRESSIONAL 46 58 17.25 %
IMMOKALEE FINE SAND 73.18 27.10 %
MYAKKA FINE SAND 120.14 44.50 %
OKEELANTA MUCK 30.16 11.17 %
TOTAL ACRES: 686.00
BASINGER AND PLACID SOILS; DEPRESSIONA� 24.15 3.52%
IMMOKALEE FINE SAND 316.99 46.21 %
MYAKKA FINE SAND 256.76 37.43%
OKEELANTA MUCK 6577 9.59%
WA9ASS0 FINE SAND 22.05 3.21 %
TOTAL ACRES: 99.00
BASINGER AND PLACID SOILS; DEPRESSIONAL 1.44 1.45%
BASINGER FINE SAND 5.18 5.23%
�
� Table 2. Land use by sub-basin, Four Seasons Area, Okeechobee Co., FL
�
�
:�
\ J
r� 1
L J
�
IMP PASTUR
MOBILE HOM
NON AG ACR
RIGHTS-OF-WAY
RSF W/ RV
SINGLE FAM
VACANT
TOTAL ACRES: 67
IMP PASTUR
MOBILE HOM
NON AG ACR
RIGHTS-OF-WAY
SINGLE FAM
VACANT
TOTAL ACRES: 120
IMP PASTUR
MOBILE HOM
NON AG ACR
RIGHTS-OF-WAY
RSF W/ RV
SINGLE FAM
UTILITIES
VACANT
TOTAL ACRES: 103
IMP PASTUR
MOBILE HOM
NON AG ACR
PK/LT RVMH
RIGHTS-OF-WAY
SINGLE FAM
VACANT
TOTAL ACRES: 39
IMP PASTUR
MOBILE HOM
RIGHTS-OF-WAY
TOTAL ACRES: 3.6
IMP PASTUR
MOBILE HOM
RIGHTS-OF-WAY
SUB BASIN
A
B
C
CC
�
E
LAND USE ACRES PCT
TOTAL ACRES: 215
IMP PASTUR
MOBILE HOM
NON AG ACR
RIGHTS-OF-WAY
SINGLE FAM
VACANT
VACANT COM
WAREHOSE/D
TOTAL ACRES: 120
MOBILE HOM
NON AG ACR
RIGHTS-OF-WAY
SINGLE FAM
VACANT
VACANT COM
TOTAL ACRES: 62
MOBILE HOM
RIGHTS-OF-WAY
SINGLE FAM
VACANT
TOTAL ACRES: 12
MOBILE HOM
RIGHTS-OF-WAY
SINGLE FAM
VACANT
TOTAL ACRES: 79
IMP PASTUR
MH/RV PRK
MOBILE HOM
RIGHTS-OF-WAY
SINGLE FAM
VACANT
TOTAL ACRES: 141
IMP PASTUR
MOBILE HOM
NON AG ACR
RIGHTS-OF-WAY
SINGLE FAM
VACANT
25.20 11.72%
61.67 28.68%
61.44 28.58°/a
14.11 6.56%
42.91 19.96%
3.60 1.67%
1.04 0.48%
2.04 0.95%
37.87 31.55%
29.85 24.87%
21.55 17.96%
16.86 14.05%
12.03 10.03%
0.99 0.83%
28.63 46.18%
11.69 18.85°/a
10.94 17.64%
10.31 16.63%
4.96 41.36%
3.35 27.92%
1.92 15.99%
1.84 15.36%
5.74 7.26%
2.50 3.17%
40.20 50.89%
12.73 16.12°/a
14.33 18.14%
3.16 4.00%
70.62 50.08%
18.48 13.11%
23.94 16.98%
7.56 5.36%
5.20 3.69%
8.48 6.02%
TABLE 2 LAND USE BY SUB BASIN
FOUR SEASONS AREA, OKEECHOBEE CO., FL
SUB BASIN LAND USE ACRES PCT
F TOTAL ACRES: 146
G
H
J
JJ
84.85 58.12%
14.47 9.91%
12.71 8.71%
0.17 0.11%
5.38 3.69%
23.64 16.19%
7.97 5.46%
13.44 20.05%
9.10 13.59°/a
10.92 16.30%
0.62 0.92%
28.97 43.23%
2.33 3.48%
14.05 11.71%
52.88 44.07°/a
10.10 8.42%
15.67 13.06%
5.53 4.60%
14.39 11.99%
0.39 0.33%
5.78 4.82%
38.61 37.48%
26.76 25.98%
4.80 4.66%
8.77 8.52%
6.34 6.16%
12.58 12.21%
4.06 3.95%
36.57 93.78%
0.65 1.66%
0.78 2.00%
2.14 59.45%
1.41 39.09%
0.07 2.00%
SUB BASIN
K
37l
OB
OC
..
LAND USE ACRES PCT
TOTAL ACRES: 66
IMP PASTUR
MOBILE HOM
NON AG ACR
RSF W/ RV
RIGHTS-OF-WAY
SINGLE FAM
VACANT
TOTAL ACRES
IMP PASTUR
RIGHTS-OF-WAY
SINGLE FAM
VACANT
TOTAL ACRES
IMP PASTUR
MOBILE HOM
NON AG ACR
OFFICE BLD
RIGHTS-OF-WAY
TOTAL ACRES
IMP PASTUR
MISC AG MH
MOBILE HOM
MULTI-FAM
NON AG ACR
RIGHTS-OF-WAY
SINGLE FAM
TOTAL ACRES
COUNTY
IMP PASTUR
MOBILE HOM
RIGHTS-OF-WAY
SINGLE FAM
VACANT
9.72 14.72%
28.61 43.34°/a
4.97 7.53%
2.81 4.26%
7.85 11.89°/a
9.12 13.82%
2.34 3.55°/a
235
95.92 40.82%
3.47 1.47°/a
9.52 4.05%
125.80 53.53%
270
194.38 71.99%
10.41 3.86%
53.42 19.79%
4.90 1.81%
6.95 2.57%
686
544.37 79.35%
1.52 0.22%
77.15 11.25%
0.20 0.03%
22.72 3.31 %
12.04 1.75%
19.10 2.78%
99
OE TOTAL ACRES: 109
IMP PASTUR
MOBILE HOM
RIGHTS-OF-WAY
VACANT
OF TOTAL ACRES: 49
IMP PASTUR
0.16 0.16%
22.58 22.81 %
39.37 39.77%
11.14 11.25%
7.22 7.30°/a
18.44 18.63%
103.33 94.80%
1.10 1.01%
1.11 1.01%
3.71 3.40%
48.71 99.41 %
• Table 3. Soil series by basin, Okeechobee Southwest Corridor,
Okeechobee Co., FL
�
�
.�
TABLE 3 SOIL SERIES BY BASIN
OKEECHOBEE SOUTHWEST CORRIDOR, OKEECHOBEE CO., FL
SUB BASIN SOILSERIES ACRES PCT SUB BASIN SOILSERIES ACRES PCT
11 TOTAL ACRES: 326 22 TOTAL ACRES: 320
BASINGER FINE SAND 2.1 0.66% BASINGER AND PLACID SOILS; DEPRESSIONAL 17.3 5.42%
FLORIDAN& RIVERIAAND PLACID SOILS; DEPRESSIONAL 11.0 3.37% BASINGER FINE SAND 27.8 8.67%
IMMOKALEE FINE SAND 237.9 72.98% FLORIDANA;RIVERIAAND PLACID SOILS; DEPRESSIONAL 6.7 2.09%
MYAKKA FINE SAND 75.4 23.13% IMMOKALEE FINE SAND 174.8 54.62%
VALKARIA FINE SAND 0.3 0.09% MYAKKA FINE SAND 50.2 15.68%
12 TOTAL ACRES: 274 VALKARIA FINE SAND 43.6 13.62%
FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 2.3 0.86% 23 TOTAL ACRES: 301
IMMOKALEE FINE SAND 245.1 89.44% BASINGER FINE SAND 10.7 3.55%
MYAKKA FINE SAND 25.0 9.12% FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIONAL 18.6 6.17%
13 TOTAL ACRES: 243 IMMOKALEE FINE SAND 216.4 71.89%
BASINGER FINE SAND 13.8 5.69% PARKWOOD FINE SAND 54.1 17.97%
FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 105.3 43.32% 24 TOTAL ACRES: 97
IMMOKALEE FINE SAND 89.2 36.69% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 87.8 90.49%
PARKWOOD FINE SAND 35.2 14.47% PARKWOOD FINE SAND 10.0 10.26%
14 TOTAL ACRES: 203 25A TOTAL ACRES: 367
BASINGER FINE SAND 13.4 6.61% FLORIDAN&RIVERIAAND PLACID SOILS; DEPRESSIONAL 343.0 93.47%
FLORIDANA; RIVERIA AND PLACID SOILS; DEPRESSIONAL 53.0 26.10% MANATEE LOAMY FINE SAND; DEPRESSIONAL 7.8 2.14%
IMMOKALEE FINE SAND 132.2 65.12% 25B TOTAL ACRES: 28
15 TOTAL ACRES: 78 FLORIDANA;RIVERIA AND PLACID SOILS; DEPRESSIONAL 28.0 100.00%
FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 77.5 99.42% 26 TOTAL ACRES: 233
PARKWOOD FINE SAND 0.7 0.93% FLORIDAN& RIVERIAAND PLACID SOILS; DEPRESSIONAL 153.1 65.69%
16 TOTAL ACRES: 66 MANATEE LOAMY FINE SAND; DEPRESSIONAL 50.3 21.58%
FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 65.9 99.80% RIVIERA FINE SAND 0.4 0.17%
17A TOTAL ACRES: 65 WATER 31.5 13.51%
FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 59.7 91.77% 27 TOTAL ACRES: 246
• MANATEE LOAMY FINE SAND; DEPRESSIONAL 4.1 6.35% BASINGER FINE SAND 42.3 17.18%
17B TOTAL ACRES: 53 FLORIDAN&RIVERIAAND PLACID SOILS; DEPRESSIONAL 53.4 21.71%
FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 40.5 76.42% IMMOKALEE FINE SAND 116.7 47.43%
WATER 12.5 23.55% PARKWOOD FINE SAND 32.5 13.21%
17C TOTAL ACRES: 142 WATER 0.1 0.03%
FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 137.2 96.62% 28 TOTAL ACRES: 303
OKEELANTA MUCK 4.8 3.38% BASINGER AND PLACID SOILS; DEPRESSIONAL 1.6 0.52%
18 TOTAL ACRES: 332 BASINGER FINE SAND 56.5 18.64%
ADAMSVILLE FINE SAND;ORGANIC SUBSTRATUM 12.3 3.71% FLORIDAN&RIVERIAAND PLACID SOILS; DEPRESSIONAL 43.1 14.22%
BASINGER FINE SAND 2.3 0.71% IMMOKALEE FINE SAND 201.3 66.42%
FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 265.9 80.08% MYAKKA FINE SAND 0.9 0.28%
OKEELANTA MUCK 37.1 11.18% VALKARIA FINE SAND 5.0 1.65%
WATER 9.9 2.99% 29 TOTAL ACRES: 331
19 TOTAL ACRES: 85 BASINGER AND PLACID SOILS; DEPRESSIONAL 7.1 2.14%
ADAMSVILLE FINE SAND;ORGANIC SUBSTRATUM 11.5 13.52% BASINGER FINE SAND 40.4 12.20%
BASINGER FINE SAND 3.2 3.75% IMMOKALEE FINE SAND 264.4 79.88%
FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 97.3 114.50% MYAKKA FINE SAND 24.8 7.49%
MANATEE LOAMY FINE SAND; DEPRESSIONAL 0.1 0.09% VALKARIA FINE SAND 7.5 2.28%
OKEELANTA MUCK 2.8 3.24% 30 TOTAL ACRES: 353
20 TOTAL ACRES: 324 BASINGER AND PLACID SOILS; DEPRESSIONAL 5.8 1.63%
BASINGER AND PLACID SOILS; DEPRESSIONAL 6.0 1.84% BASINGER FINE SAND 1.2 0.35%
BASINGER FINE SAND 11.4 3.53% FLORIDANA;RIVERIAAND PLACID SOILS; DEPRESSIONAL 11.2 3.18%
IMMOKALEE FINE SAND 296.2 91.42% IMMOKALEE FINE SAND 234.9 66.53%
MYAKKA FINE SAND 18.6 5.74% PARKWOOD FINE SAND 54.2 15.37%
21 TOTAL ACRES: 105 VALKARIA FINE SAND 7.7 2.19%
BASINGER FINE SAND 0.0 0.02% WATER 28.9 8.19%
IMMOKALEE FINE SAND 32.5 30.95% 31 TOTAL ACRES: 72
MYAKKA FINE SAND 76.1 72.52% BASINGER FINE SAND 3.9 5.45%
FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIONAL 53.7 74.56%
IMMOKALEE FINE SAND 0.4 0.57%
PARKWOOD FINE SAND 11.3 15.63%
• TABLE 4 LAND USE BY BASIN
OKEECHOBEE SOUTHWEST CORRIDOR,OKEECHOBEE CO.,FL
SUB BASIN LAND USE ACRES PCT SUB BASIN LAND USE ACRES PCT SUB BASIIJ LAND USE ACRES PCT SUB BASIN LAND USE ACRES PCT SUB BASIN LAND USE ACRES PCT
11 TOTAL ACRES: 326 14 TOTAL ACRES: 203 18 TOTALACRES: 332 21 TOTAL ACRES: 105 24 TOTALACRES: 97
CHURCHES 13.7 4.19% CHURCHES 10.5 5,19% COMMUNITY 40.0 12.05% CONV STORE 2.2 2.08% CONDOMINIA 0.0 0.03%
CONV STORE 0.7 0.22% CONV STORE 1.2 0.68% CONV STORE 2.9 0.86% COUNTY 3.7 3.55% GROVE W/S 16.1 16.56%
COUNTY 1.0 0.30% COUNTY 1.5 0.73% FINANCIAL 1.8 0.54% MH/RV PRK 0.4 0.37% IMP PASTUR 63.3 65.28%
MOBILE HOM 0.3 0.10% FINANCIAL 0.8 0.37% HOTELS/MOT 6.4 1.94% MOBILE HOM 12.5 11.94% SINGLE FAM 12.3 12.67%
MULTI-FAM 1.1 0.34% IMP PASTUR 11.9 5.86% IMP PASTUR 129.8 39.09% OFFICE BLD 1.3 1.21% 25A TOTAL ACRES: 367
MUNICIPAL 0.1 0.02% MH PARK 0.3 0.53% MISC AG SF 9.7 2.91% OPEN STORA 1.0 0.98% CROP III 20.0 5.44
MXD RES/OF 1.3 0.40% MOBILE HOM 0.4 0,21% MULTI-FAM 2.5 0.75% PK/LT RVMH 8.6 8.15% IMP PASTUR 71.5 19.48%
NAT PASTUR 62.0 19.02% MULTI-FAM 0.1 0.07% NIGHTCLUB/ 1.1 0.33% SINGLE FAM 20.6 19.66% MISC AG 260.2 70.89%
NON AG ACR 19.1 5.85% MUNICIPAL 0.6 0.30% NON AG ACR 9.1 2.75% STATE 2.0 1.95% 258 TOTAL ACRES: 28
CILIA 0.0 0.00% MXD RES/OF 2.2 1.09% 0 U A 9.6 2.89% STORES/1 S 0.1 0.11% NON AG ACR 6.5 23.11%
OFFICE BLD 2.2 0.66% NIGHTCLUB/ 0.3 0.16% OFFICE BLD 5.7 1.71% VACANT 11.8 11.27% SINGLE FAM 5.2 18.44%
PRVT SCHL/ 2.4 0.72% NON-PROFIT 1.0 0.51% PK/LT RVMH 38.6 11.64% VACANT IND 7.9 7.52% VACANT 19.0 67.92%
RIGHTS-OF- 0.3 0.09% OFFICE BLD 3.4 1.67% PROFESS OF 2.0 0.60% VEH SALE/R 8.7 8.32% 26 TOTAL ACRES: 233
SERVICE ST 0.3 0.09% PROFESS OF 0.8 0.38% RESTAURANT 5.2 1.57% 22 TOTALACRES: 320 IMP PASTUR 149.8 64.28%
SINGLE FAM 96.1 29.47% PRVT SCHU 0.6 028% SINGLE FAM 13.3 3.99% CHURCHES 1.5 0.46% MISC AG 0.8 0.33%
STATE 0.6 0.18% PUBLIC SCH 23.9 11.77% STORES/1 S 6.0 1.80% CONV STORE 1.0 0.31% NON AG ACR 1.0 0.43%
STORES/1 S 6.9 2.10% REPAIR SER 2.9 1.41% VACANT 26.4 7.95% COUNTY 0.3 0.11% VACANT 81.1 34.79%
VACANT 39.3 12.05% RESTAURANT 0.9 0.44% VACANT COM 7.7 2.31% IMP PASTUR 69.7 21.78% 27 TOTAL ACRES: 246
VACANT COM 1.3 0.40% SINGLE FAM 88.3 43.51% VEH SALE/R 3.0 0.91% MOBILE HOM 16.9 5.27% IMP PASTUR 81.5 33.13%
VEH SALE/R 0.9 0.27% STORE/FLEA 0.2 0.08% WAREHOSE/D 2.3 0.68% MULTI-FAM 1.9 0.60% MOBILE HOM 8.1 3.31%
WAREHOSE/D 1.3 0.41% STORES/1 S 1.0 0.49% 19 TOTAL ACRES: 85 MXD RES/OF 0.7 0.23% NON AG ACR 46.6 18.94%
12 TOTALACRES: 274 THEATER/AU 2.1 1.02% MOBILE HOM 24.0 28.23% NON AG ACR 21.4 6.67% SINGLE FAM 83.0 33.72%
BEAUTY PAR 0.5 0.18% VACANT 6.8 3.35% NON AG ACR 4.7 5.48% OFFICE BLD 0.5 0.15% VACANT 13.5 5.47%
CHURCHES 15.6 5.70% VACANT COM 2.9 1.45% O U A 65.5 77.11% OPEN STORA 2.0 0.63% 28 TOTALACRES: 303
COMMUNITY 0.8 0.31% VEH SALE/R 0.4 0.17% OFFICE BLD 7.3 8.58% PK/LT RVMH 1.8 0.55% IMP PASTUR 166.2 54.84%
CONV STORE 1.8 0.66% 15 TOTAL ACRES: 78 SINGLE FAM 9.6 11,35% RESTAURANT 0.7 0.22% MOBILE HOM 0.6 0.19%
COUNTY 0.8 0.31% IMP PASTUR 72.8 93.29% STORES/1 S 2.4 2.82% SINGLE FAM 145.4 45.45% NON AG ACR 9.8 3.24%
INSURANCE 0.3 0.12% SINGLE FAM 2.2 2.83% 20 TOTALACRES: 324 STORES/1 S 2.0 0.63% SINGLE FAM 80.8 26.65%
• MULTI-FAM 6.1 2.21% 16 TOTAL ACRES: 66 BEAUTYPAR 0.3 0.11% VACANT 18.2 5.69% VACANT 21.4 7.07%
MUNICIPAL 0.1 0.02% CHURCHES 33.3 50.52% CENTRALLY 12.9 3.97% VACANT COM 0.3 0.09% VACANT COM 3.2 1.05%
MXD RES/OF 3.8 1.40% FINANCIAL 1.0 1.52% CHURCHES 6.5 2.01% VEH SALE/R 0.3 0.11% WATER MG D 5.8 1.92%
OUA 0.7 0.24% HOTELS/MOT 4.4 6.59% CLUBS/LODG 0.4 0.13% WAREHOSE/D 1.7 0,54% 29 TOTALACRES: 331
OFFCE BLD 0.9 0.33% MXD RES/OF 0.4 0.66% CONV STORE 0.3 0.11% 23 TOTAL ACRES: 301 IMP PASTUR 313.9 94.82%
OFFICE BLD 6.9 2.52% OFFICE BLD 1.4 2.17% COUNTY 31.7 9.79% CHURCHES 6.3 2.09% WATER MG D 26.2 7.91%
OPEN STORA 0.4 0.16% PROFESS OF 3.5 5.28% FINANCIAL 2.2 0.67% CLUBS/LODG 0.3 0.10% 30 TOTAL ACRES: 353
PK/LT RVMH 0.7 0.25% STORES/1 S 3.1 4.74% HOTELS/MOT 1.6 0.51% CONDOMINIA 7.6 2.54% IMP PASTUR 169.2 47.94%
PROFESS OF 1.0 0.37% VACANT COM 7.2 10.97% MULTI-FAM 6.0 1.86% IMP PASTUR 57.2 19.02% MINING 36.9 10.47%
PRVT SCHU 2.3 0.83% VEH SALE/R 4.0 6.10% MUNICIPAL 3.1 0.97% MOBILE HOM 4.8 1.59% MISC AG SF 7.0 2.00%
PUBLIC SCH 24.6 8.99% WAREHOSE/D 2.3 3.42% MXD RES/OF 1.5 0.47% NON AG ACR 66.8 22.18% MOBILE HOM 0.5 0.13%
REPAIR SER 1.8 0.67% 17A TOTAL ACRES: 65 OFFCE BLD 11.2 3.46% 0 U A 0.0 0.01% NON AG ACR 7.5 2.13%
RESTAURANT 3.8 1.37% MOBILE HOM 8.9 13.68% OPEN STORA 2.1 0.65% SINGLE FAM 122.0 40.52% SINGLE FAM 120.0 34.00%
SINGLE FAM 78.8 28.76% NON AG ACR 57.7 08.74% PK/LT RVMH 0.7 0.20% VACANT 12.8 4.27% VACANT 37.3 10.56%
STORES/1 S 8.8 3.20% SINGLE FAM 0.5 0.71% PROFESS OF 2.2 0.66% 31 TOTAL ACRES: 72
SUPERMARKE 2.0 0.73% VACANT 1.3 1.94% PRVT SCHU 0.8 0.26% IMP PASTUR 5.0 7.01%
VACANT 14.2 5.18% 17B TOTAL ACRES: 53 REPAIR SER 0.8 0.25%
VACANT COM 5.5 2.02% CONDOMINIA 13.3 25.07% RESTAURANT 2.7 0.83%
VEH SALE/R 1.2 0.42% IMP PASTUR 14.0 26.41% SERVICE ST 0.3 0.10%
WAREHOSE/D 1.1 0.41% MOBILE HOM 20.2 38.07% SINGLE FAM 53.6 16.55%
13 TOTALACRES: 243 NON AG ACR 9.9 18.77% STORES/1 S 9.3 2.87%
COUNTY 39.2 16.13% SINGLE FAM 14.6 27.58% UTILITIES 2.1 0.64%
GROVES,ORC 149.6 61.57% VAC INSTIT 10.0 18.94% VACANT 27.1 8.35%
IMP PASTUR 10.0 4.12% VACANT 0.5 1,00% VACANT COM 4.9 1.52%
MXD RES/OF 0.1 0.06% 17C TOTAL ACRES: 142 VACANT IND 19.7 6.08%
PK/LT RVMH 0.8 0.35% CONDOMINIA 11.7 8.27% VEH SALE/R 6.7 2.06%
SINGLE FAM 34.2 14.08% MOBILE HOM 78.5 55.27% WAREHOSE/D 8.6 2.67%
VACANT 6.4 2.65% O U A 0.1 0.09%
SINGLE FAM 25.0 17.64%
VACANT 10.9 7.69%
•