Loading...
Comprehensive Urbanized Area Stormwater Master Plan - Volume 2�:�....� OKE:ECHOBEE COV NTY CO��IPREHENSIVE URBANIZED ARE�4 STO RMWATE R MASTER PLAN VOLUME II .�O g.� � w w � � O - - �� . \O R �U% MAY 2007 � . CAS PROJECT No. 00-0903-146 PREPARED BY � Corporate o�ffice: 1000 W. McNalb Road Pompano Beach„ FL 33069 Tel : (954) 782-8222 Branch Offices: Wellington Canal Point 1 _ � REPORT OF WAl'ER QUALITY MODEL SIMULATION IIN COOPERATION WITH CAS'S OKEIECHOBEE COUNTY STORMWATER MASTER PLAN PROJECT OKEECHOBEE COUNTY, FLORIDA ASMUSSEN ENGINEERING, LLC P.O. Box 1998 Okeechobee, Florida 34973-1998 May 22, 2007 TABLE OF CONTENTS Section Page 1.0 Executive Summary ............................................................................ ..... 2. 0 I ntrod u ct i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0 Approach ............................................................................................. 3.1 Model Selection ........................................................................... 3.2 Water Quality ............................................................................ 4.0 Problem Areas ..............................................:................................... ... 4.1 Four Seasons ........................................................................... 4.2 Okeechobee Southwest Corridor ...................................................12 i 5.0 Data Available and Model Applicability .................................................... ... 2 6.0 Model Simulations ................................................................................. 6.1 Four Seasons ............................................................................ 6.1.1 Off-site areas ................................................................ ... 6.1.1.1 Off-site Sub-basins OA, OB, and OC .........................20 6.1.1.2 Off-site Sub-basins OD, OE, and OF ..........................21 6.1.2. On-site Sub-basins A thru K .... ...... ... ... ............ ......................24 6.1.3. Four Seasons Basin Summary ............................................28 6.1.4. Storm Flow for 1-, 2-, and 3-day Durations ............................28 6.1.5. Storm Flow 1-day Peak Discharge .......................................32 6.1.6. Alternate Agricultural Management Practice ..........................35 6.2 Okeechobee Southwest Corridor .....................................................37 6.2.1. Southwest Residential Area .................................... ........... 37 6.2.2. Southwest Corridor Model Simulations ................................ 38 6.2.3. Okeechobee Southwest Corridor Summaries ........................ 48 6.2.4. Okeechobee Southwest Corridor Storm Flow for 1-, 2-, and 3-day events ...................................................................51 6.2.5. Okeechobee Southwest Corridor Storm Flow Peak DischargeRates .....................................:....................... 51 2 7.0 References .......................................................................................... Appendix A. Fig�ares ...... ............ ... ......... .................................... ................ 6 Appendix B. Tables .................................................................................... 7 AppendixC. Ma��s ...................................................................................... AppendixD. PIa1:es .....................................................................................87 ,,.. 3 1.0 EXECUTIVE SUMMARY The GLEAMS model was used to simulate storm water discharge for Four Seasons and Okeechobee Southwest Corridor problem areas in Okeechobee County, Florida. The 50-yr (1931-80) daily precipitation record from Avon Park, Florida was selected for model applications since greater runoff events occurred during that period compared with that for 1956-2005. The 75-yr (1931-2005) record was used for frequency analyses to estimate 1-, 2-, and 3-day storm water discharge for 5-, 10-, 25-, 50-, and 100-yr recurrence intervals. Model simulations were made for residential and agricultural land uses in Four Seasons and Okeechobee Southwest Corridor problem areas. Average annual storm water, return flow, and total stream flow were estimated to determine water volumes to be considered in proposed storm water treatment areas (STA's) and/or drainage canals. Total nitrogen and total phosphorus loads were determined for each sub-basin source in the problem areas. Unit masses of each element were calculated at sub-basin outlets, and estimates were made for losses in channel conveyance systems and STA's. These estimates provide potential plant-nutrient loadings to Nubbin Slough, Mosquito Creek, and Lemkin Creek. Average-annual unit-area storm flow in Four Seasons ranged from 6.46 in/ac for improved pasture to 9.65 in/ac for residential area. Average annual unit-area stream flow (storm flow + return flow} ranged from 9.69 in/ac to 12.53 in/ac for the same land uses. The 1-day 5-yr storm flow was 2.67 in/ac for improved pasture and the 100-yr storm flow was 5.99 inlac. The 1-day storm flow for residential areas ranged from 3.08 to 6.37 in/ac for the 5-yr and 100-yr recurrence, respectively. Average-annual unit-area total-nitrogen (TN) losses in storm flow at Four Seasons ranged from 2.82 to .4.78 Ibs/ac while the unit area losses in stream flow ranged from 0 n 3.19 to 5.23 Ibs/,�c. Average annual unit area total phosphorus (TP) losses in storm flow ranged from 0.08 to 2.56 Ibs/ac, and the losses in total stream flow was the same. In the Okeechobee Southwest Corridor, average-annual unit-area storm flow ranged from 5.89 in/ac for a basin with improved pasture sod farms to 12.87 in/ac for a residential and municipal basin with relatively large impervious areas. The total stream flow ranged from 8.48 to 15.12 in/ac for the same basins. The 1-day storm flow for the agricultural basin was 2.51 in/ac for a 5-yr event and 5.52 in/ac for a 100-yr event. The corresponding v��lues for the residential/municipal basin was 3.43 in/ac and 6.88 in/ac for the 5-yr and 100-year events, respectively. In the OkeechobE:e Southwest Corridor, average annual unit area losses of TN in storm flow ranged from 2.05 to 4.29 Ibs/ac, while that for total stream flow ranged from 2.29- 8.05 Ibs/ac. TP losses ranged from 0.08 to 2.56 Ibs/ac for both storm flow and total stream flow. Reductions of TIU and TP in conveyance channels from literature were found to be approximately 6Ci% and 15%, respectively. Reductions of TN and TP in wet detention (STA's) were found to be 25% and 60% respectively. Total loads of TN and TP would be 10,229 Ibs arid 4,195 Ibs, respectively, with channel losses of 6,137 Ibs of TN and and 629 Ibs of TI' for flow from Four Seasons basins into existing and proposed STA's. The estimated Ic�sses for wet detention in the STA's would be 1,023 Ibs for TN and 2,140 Ibs for TP. Thus, the estimated loads discharging from the STA's would be 3,069 Ibs of TN and 1,4�25 Ibs of TP. Similar conveyance reductions for off-site basins OD-OF would be 689 Ib:� and 70 Ibs for TN and TP, respectively, resulting in estimated loads entering Mosquit�o Creek would be 460 Ibs TN and 403 Ibs TP. In the Okeechob��e Southwest Corridor, where all the drainage canal flow is proposed to discharge into ��TA's or water management areas, the channel and wet detention reductions result�ed in TN loads from 18,407 Ibs to 5,522 Ibs. Similar reductions for TP reduced the total source loads from 3,827 lbs to 1,301 Ibs. �� 2.0 INTRODUCTION HDR Engineering, Inc (2004) identified water quantity and water quality problems in and around City of Okeechobee, Florida. Their report dealt primarily with administrative matters and did not quantify the extent of storm water problems nor offer solutions to identified problems. One of the items of discussion in the HDR report was selection of a model for storm water simulation. The report gave an overview of the WAM model (Bottcher, et al., 2002) and gave no information on results of any model simulations substantive to the County to alleviate problems of flooding and water quality. Craig A. Smith & Associates entered into an agreement with Okeechobee County (CAS Project No. 00-0903-146 to assemble data sets, assess storm water problems, and to make recommendations to alleviate those problems consistent with SFWMD criteria for improving water quantity and water quality to Lake Okeechobee. This report is prepared for CAS's consideration of storm water model simulations on which to make recommendations to Okeechobee County for remediation of existing flooding and water quality problems in the subject areas. 3.0 APPROACH It is physically and financially impossible to measure (monitor) runoff, stream flow, and quality of all water discharged from farms, ranches, and urban areas. Further, it is impossible to measure effects of changes in land use and treatment before changes take place. Therefore, the only feasible way to estimate the effects a priori is through use of computer models of physical processes based upon somewhat limited research data. Those processes consist of pollutant carriers (runoff and sediment) and pollutant loadings (plant nutrient and/or pesticide entrainment and delivery). It is essential to � _ assess both ele:ments in order to extrapolate research results to locations and conditions beyor�d their site of collection. The carrier must be adequately assessed befiore loadings c.an be evaluated. 3.1 Model Selec�tion The USDA-ARS developed the CREAMS model (Knisel, 1980) to assess nonpoint source pollution from agriculture and consider alternative management strategies to reduce pollutant loads. CREAMS was primarily a surface response-model, i.e. runoff, sediment yield, ��nd pesticide and plant nutrient runoff. Little attention was given to leaching or for riigh water-table conditions. Neatwole, et al. (1987) extended model applicability for F'lorida conditions with CREAMS-WT, which builds onto CREAMS and has become a preferred model for SFWMD (South Florida Water Management District). CREAMS-WT is .a principal component of the WAM model (Bottcher, 2002). An integral com��onent of CREAMS and CREAMS-WT is a modification of the SCS curve-number m��thod for estimating daily or storm runoff from storm rainfall (U.S. Soil Conservation Se�rvice, 1972). Debo and Associates (2001) assembled the Georgia storm water management manual with input from numerous consultants. The SCS curve number ��rocedure was included in the technical handbook. This further demonstrates the� wide acceptance of the procedure for estimating storm runoff. In 1987, Leonard, et al (1987) revised CREAMS to extend its representation and applicability for runoff, sediment yield, and pesticide loadings at the edge-of-field and bottom-of-root-zc�ne, called GLEAMS. Knisel et al (1993) developed a comprehensive plant nutrient c��mponent for GLEAMS for nitrogen and phosphorus cycling and movement into, within, below, and off the soil surface. Soil representations input to GLEAMS enables simulation of perched water tables above restrictive layers below the root zone. Perched water tables that build up near or at the ground surface during the rainy season cau�se significant direct surFace runoff. Runoff carries pollutant loads such 7 as nitrogen, phosphorus, and pesticides to drainage ditches and channels. Prolonged ( drainage of excess soil water (perched water table) along the confining layer results in longer-term sustained flow in the ditches and channels. GLEAMS was developed to represent a wide range of agricultural management scenarios such as animal waste application by spreading (or by deposition from animal grazing), sod farming, multiple cropping, etc. Although GLEAMS was developed for field-size source areas, it can be applied on several hundred acres. However, it should be recognized that it does not allow attenuation or adsorption in channel delivery systems. GLEAMS can simulate daily processes for 50-yr climatic records to evaluate best management practices (BMP's) for field-size areas which enables long-term probability analyses. Improved soil representations and process formulations in the GLEAMS model made it more representative of management systems over the CREAMS model. Management practices are applied on individual fields or pastures or management units. Some fertilizer application is made on a given pasture, and that pasture is grazed at some specific intensity of livestock. Adjacent lands may be operated by different managers and thus has difFerent response to rainfall. Yet these aggregate areas, or basins, may discharge water and pollutant loads to the same drainage network and be further transferred to some receiving body, i.e. stream, or pond or lake. The attenuation of water and chemicals in transit through a delivery system further impacts the receiving body. However, it must be realized that management is imposed on individual fields, pastures, and residential areas. 3.2 Water Quality Water quality emanating from agricultural, municipal, and residential areas has become I a major problem in recent years. Pollutants entering Lake Okeechobee � is a primary � concern for SFVVMD. Little attention has been given to nitrogen loadings to Lake 8 Okeechobee in the past, primarily because of the very transient nature of the nitrogen species and the fact that relatively large nitrogen loadings to the lake occur annually from rainfall. Ho�rvever, more concern is being generated because of intensive activities and rapid growth, particularly residential areas. Best managemeint practices (BMP's) are routinely considered for reductions of runoff and phosphorus input to Lake Okeechobee. These BMP's include swales, channels, wetlands, and detention/retention ponds which reduce pollutant loads beyond field edges. The SFINMD (2005) incorporated these effects into their phosphorus budget estimating procedure for permitting land-use changes in the contributing area to the lake. Bottcher and Harper (2003) provided information on phosphorus removal efficiency for se�veral agricultural BMP's which ranged from 2-70% and 25-70% for urban BMP's. Most investigations on nitrogen reduction by BMP's have occurred in urban areas rather than from diffuse nonpoint agricultural systems. There have been some comparisons of - nitrogen reductions for channels and wetlands, and for wet and dry retention/detention storage areas. Strassler et al. (1999) reported reductions of 11 % for total nitrogen (TN), 39% for organic nitrogen (ON), 11 % for nitrate-nitrogen (NO3-N), and 3% for ammonia nitrogen (NH3-N) in o.peri-channel flow from a 140-ac agricultural area in Maryland. Total phosphorus (l"P;1 concentrations were reduced by 15%. These values varied from storm-to-storm due, among other things, to "first flush" concentrations, especially for phosphorus (Livingston, 1999). The first-flush effect into wet and dry detention storage is dependent upcm residence time in the storage ranging from 24-72 hours. Harper (1999) reported TKN (total Kjeldahl nitrogen) and TN reductions of 80-100% in residential storm water for dry detention storage, and 91 % reduction in commercial storm water flow for wet detention storage. TP reduction was 61 % for both residential and commercial :�torm water. 0 Wotzka and Oberts (1988) reported 85% TN removal by detention basins compared with 24% removal by wetlands. They further reported 78% and 36% removal of TP for detention basins and wetlands, respectively. Schueler (1995) found 40% removal of TN and 60% removal of TP for wet storm-water ponds and NO REMOVAL for TN or TP for dry storm-water ponds. TN and ON are the major nitrogen constituents in storm runoff from agricultural or residential areas. Reduction values found in the literature appear to be in the range of 40-80% TN in grass-lined channels and dry detention/retention storage. Possibly 10- 35% nitrogen removal might be expected in wet storage. In view of the above considerations, GLEAMS was considered appropriate for the purposes of examining storm water quantity and quality from source areas. Nitrogen and phosphorus reductions must be considered for BMP's in downstream delivery to major streams and ultimately as loadings to Lake Okeechobee. 4.0 PROBLEM AREAS There are two principal areas of concern for storm water in Okeechobee County under the present contract. Flooding from storm runoff occurs on both areas: (1) Four Seasons area located northeast of the City of Okeechobee and (2) Southwest Corridor located southwest of the City of Okeechobee. Both areas are in the Bassinger-Myakka- Immokalee soil association in Okeechobee County, Florida (U.S. Department of Agriculture-Natural Resources Conservation Service, 2003). A map of the Okeechobee County stormwater project area is shown in Appendix A, Figure 1(Rubio, 2007), which shows the Four Seasons and Okeechobee Southwest Corridor problem areas. Sub- basins within the problem areas are not clear in the figure, but more detail will be shown in larger scale maps later in this report. 10 4.1 Four Seasons Four Seasons is an un-platted non-engineered subdivision. Flooding in the area results from a combinati��n of conditions and consequences. The flat topography, lack of well- defined surFace clrainage with clogged channels, and high water table conditions during the rainy season result in considerable local flooding. During the 1950's, development of residences ori relatively large lots began when the mobile home industry started booming. Construction of access roads continued over the years as the area grew, and drainage system conveyance became inadequate. In some instances street and driveway constr�iction completely disregarded natural drainage and prolonged water ponding occurrecl with slow evaporation during the dry season as the only mechanism for dissipation. As further un-restricted development took place, larger areas of residences, outbuildings, barns, hard-surface or paved driveways and street paving resulted in more impervious area contributing 98% of rainfall to runoff, thus further increasing the flooding potential during the rainy season. The low-density iresidential area in Four Seasons contains significant areas of pasture land where homE:owners have horses and cows grazing the entire lot surrounding the residence. Som�e property owners have dug ponds for livestock water supply and created dams with outflow pipes of limited discharge capacity. A well-designed ;�urFace water management system is the only feasible way to alleviate flooding and to convey storm water to existing SFWMD canal systems. Peer Consultants (20Ci5) proposed some alternative drainage in Four Seasons. However, their proposal did not address the ultimate disposition of storm water, and did not propose alleviatic►n of flooding. There are significant challenges that must be addressed in order to accomplish the necessary storm��water management. SurFace drainage systems must be constructed to convey water in a non-harmful manner to off-site storm water treatment areas and detention basins. After construction, maintenance of the system will be an additional 11 problem as there is not a Home Owners Association (HOA) with designated compliance authority. Okeechobee County and/or SFWMD probably would have to provide maintenance in order to be compliant with local and state regulations. All aspects of these endeavors must involve complete and open communications among all parties. If any entity—County, State, properly owners—are not in complete accord, the project would be doomed to failure and the flooding problems would continue and worsen indefinitely with continued building in the area. These challenges and considerations are beyond the scope of this project which deals only with runoff volumes and rates, and plant nutrient loads. 4.2 Okeechobee Southwest Corridor The southwest corridor of the county (Appendix A, Figure 1) is a growing area and is currently plagued with flooding. Although the flooding is primarily a problem of insufficient storage, drainage canal size, and maintenance, subdivisions within this corridor flood frequently because of inadequate tertiary drainage systems. There are some agricultural areas discharging into the lower end of the drainage canal. The dominant land use is improved cattle and horse pastures. A few sod farms exist in the lower part of the Corridor. There are several active and inactive shell mines in the lower area near Lemkin Creek. The inactive mines are currently water impoundments which serve in water quality remediation. 5.0 DATA AVAILABLE AND MODEL APPLICABILITY The U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), in cooperation with the U.S. Geological Survey (USGS), the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS), formerly U.S. Department of Agriculture-Soil Conservation Service, and South Florida Water 12 Management Disirict (SFWMD), collected data for the upper Taylor Creek watershed in Okeechobee Coianty from 1956 to 1975. The data collection included rainfall, stream flow, and water t;�ble measurements. Data summaries and analyses were published in 1985 (Knisel, et ��I, 1985). Measured annual rainfall and stream flow for the upper 15.7 sq. mi. drainage area (W-3 designation) averaged 47.99 inches and 11.88 inches, respectively, for �the 20-yr. record period. During the record period, land use included considerable ares�s of improved pasture but consisted mainly of unimproved pasture. In order to extrapolate to long-term rainfall data for probability analyses, two NOAA cooperative-obse�rver locations were selected for examination. A short-term record at nearby Ft. Drurri, Florida, and longer-term records at the more distant Avon Park, Florida. Daily prE:cipitation data were available for Ft. Drum for the period 1957 to 1992 (Nicks, 1998). Precipitation data at Avon Park are available for the 75-yr period 1931- 2005 (Nicks, 1998; Zhang, 2006). A GLEAMS simialation was made for the 1957-75 rainfall record at Ft. Drum and a second simulation was made for the 1956-75 record at Avon Park. The simulations were made for unimproved pasture land use for comparative purposes. Model simulation result;� are compared with obse.rved data for Upper Taylor Creek watershed W-3 in Table 1. Runoff and perc��lation were not separately measured at the W-3 gaging station, and model simulatior� results of the two components are added to be approximately equivalent to tot<<I stream flow. It is recognized that some of the simulated percolation moves to shallov�► groundwater and would not appear as stream flow in channels. Also, it should be pointed out that observed rainfall is weighted from finro recording rain gages, and areal rainfall is normally less than point rainfall. The comparisons indicate that GLEAMS can be used to (1) represent large areas for water-balance calculations, and (2) be representative with long-term climaticYecords within a climatic region. 13 The 1931-2005 precipitation record at Avon Park, Florida (state climatological station 08-0369, Appendix A, Figure 2) was examined for appropriateness of record for long- term model simulation. There were several years available prior to 1931 (Nicks, 1998), but there were many months and days with missing record hence the 75-yr period was selected as the most usable. Table 1. Observed and simulated runoff, percolation, and stream flow, Upper Taylor Creek watershed W-3, 1956-75. Location Precipitation Runoff Percolation Stream flow (inches inches) (inches) inches Observed W-3 (1956-75 47.99 11.88 Simulated with Ft. Drum 50.52 7.36 2.85 10.21 rainfall 1957-75 � Simulated with � Avon Park 54.32 9.10 2.86 11.96 rainfall 1956-75 A plot of cumulative annual observed rainfall (series 1) and cumulative mean annual rainfall (series 2) is shown in Appendix A, Figure 3 and cumulative normalized departures are shown in Figure 4.. The average was 52.23 inches for the 75-yr period. Observed annual values were approximately normal during the first 18 years, but a gradual departure continued until about year 30 (1961) when a strong departure continued for about 50 years (�1980). Since about 1980, there has been another period of 26 years with near normal annual rainfall. Similar results were found at Belle Glade, Florida (08-0611), but average annual rainfall was greater than that at Avon Park. The entire 75-yr record of daily rainfall was used with the GLEAMS model to simulate long-term daily runoff, percolation, and nitrogen and phosphorus losses from improved 14 pasture for further frequency analyses. Since GLEAMS can only use a maximum of 50 years in one simulation run, two over-lapping periods were used: 1931-1980 and 1956- 2005. Runoff, pe:rcolation, and N and P losses were the same for over-lap years 1956- 1980. Average a�nnual precipitation for the 1931-80 period was approximately 2 inches greater than for the 1956-2005 period. Based upon these comparisons, the 1931-1980 record period was selected for all 50-yr simulations used in this report. Furthermore, it appears that the climatic region is in a drier than normal period since about 1960. Design criteria are oftentimes based upon some selected storm duration and frequency, or recurrence inte:rval. Long-term records are important in determining storm frequency. In flatland hydrol�ogy, multiples of days may be significant for design information, such as 1-day, 2-day, and 3-day durations. The 75-yr rainfall record at Avon Park, Florida was analyzed for annual maximum 1-day, 2-day, and 3-day rainfall amounts. These 75-yr ann�aal maximum for each duration were fitted with a computerized Gumbel extreme-value procedure (Potter, 1949) to estimate the 5-, 10-, 25-, 50-, and 100-yr events for each duration. Results of the frequency analyses are given in Table 2. Table 2. Result:� of frequency analyses for 1-, 2-, and 3-day annual maximum rainfall, Avon Park, Florida, 1931-2005. Recurrence Interval, ears Duration 5� ears 10 ears 25 ears 50 ears 100 ears Depth, inches 1-da 4.89 5.67 6.93 7.80 8.66 2-da 5.82 6.69 8.07 9.03 9.98 3-da 6.57 7.51 9.00 10.04 11.06 The data in Table 2 reveal that little additional rainfall occurs on the 2"d and 3�d days following the anrival maximum 1-day storm. This indicates that hurricane-associated 15 rainfall is generally over on the day after maximum rainfall, i.e. most hurricanes pass in � 1-day's time. Even extreme events for 50- and 100-year occurrences are not vastly greater than the 5-year rainfall. The 75-year simulation should be representative of longer-term precipitation. 6.0 MODEL SIMULATIONS GLEAMS model simulations were made to obtain unit area runoff and percolation, and nitrogen and phosphorus losses. The unit area data were used to accumulate storm and annual discharge volumes and loads of N and P leaving respective areas. 6.1 FOUR SEASONS The Four Seasons problem area consists of two parts: (1) off-site, primarily agricultural area, and (2) on-site, primarily residential area. Some of the residential sub-basins include significant amounts of improved and/or un-improved pasture. The residential area consists of low- to medium-density residences on moderate size lots. Most households have -animals, generally horses or cows, that graze pasture areas surrounding the residences. Off-site sub-basins OA, OB, and OC are primarily improved pasture areas with drainage outside the residential area. Drainage from OB currently enters the channel system into on-site sub-basin A, but re-routing through sub-basin OC is proposed. These sub- basins are grouped in the analyses for convenience of the report users. Sub-basins OD, OE, and OF drain into delivery channels outside the residential areas and outside the delivery to a proposed Storm Treatment Area (STA). Basins OE and OF are cattle pastures, mainly improved, although OE contains a significant amount of un-improved pasture. Sub-basin OD is primarily a medium-density residential area with 16 significant amourits of improved and un-improved pastures. These three sub-basins are also grouped in this report for users' convenience. Maps of the Fo�ur Seasons are shown in Appendix C. Map 1 shows sub-division delineations witf i topography superimposed with 5-ft contours showing a general southwesterly dr;ainage pattern. Table 3 shows all sub-basins in Four Seasons with their respective revised areas determined by Williams (2007). The most significant revision was the ,�rea of sub-basin OA. Table 3. Four Se�asons sub-basins and drainage areas. Ba:�in Name Area, Acres A 215 B 120 C 62 CC 12 D 79 E 141 F 146 G 67 H 120 I 103 J 39 JJ 3.6 K 66 , OA 235 OB 270 OC 686 OD 99 OE 109 OF 49 Total 2,621.6 17 Soils data from the Okeechobee County soil survey (USDA-NRCS, 2003) is f superimposed on the sub-basin delineation in map 2 of Appendix C. As stated earlier, NRCS groups the soils into the Bassinger-Myakka-Immokalee soil association. Map 3 shows land use for Four Seasons. This map distinguishes the different residential area breakdowns. Land cover from 2006 aerial photos (Williams, 2007) is shown on map 4 in Appendix C. The cover map was used to estimate relative percentages of residential area, improved pasture, and un-improved pasture within sub- basins. These percentages were used to estimate SCS curve numbers (USDA-SCS, 1972) for use in GLEAMS model applications. The curve numbers are not given in Table 3 since the procedure incorporated in the model is an adaptation to estimate maximum soil water storage. This is significantly different from the original procedure used for design storm purposes (USDA-SCS, 1972; Debo, et al., 2003). 6.1.1 Model Simulations for Offsite Areas As stated earlier, GLEAMS assumes uniform rainfall, uniform soil, uniform water retention and saturated conductivity, uniform N& P content, and uniform fertilizer and manure applications over the "field". From these assumptions, a uniform depth of runoff, percolation, and N& P losses are simulated. Thus, unit depth of runoff (inches), unit depth of percolation (inches), and unit losses of N& P(Ibs/ac ) were simulated. In this manner, size of area is important only when total volume of runoff and percolation and total mass of N and P are calculated for a drainage area. The major pathways of plant nutrient losses are demonstrated in Table 4. Nitrogen species (ammonia and nitrate) move in the solution phase in runoff and in percolation, whereas phosphorus moves mainly in the adsorbed phase with the clay fraction in sediment and as solution P in runoff. Percolation over the 50-yr simulation period was approximately half the average runoff depth. 18 During the 1931-80 simulation period, annual precipitation ranged from 34.86 inches in 1955 to 79.63 inches in 1959. However, rainfall distribution within the year is sometimes more dominating for runoff production. For example, in 1955, simulated runoff was 2.20 inches compared with the least annual value of 1.67 inches when annual rainfall w�as 37.12 inches. Likewise, maximum simulated annual runoff was 19.60 inches in 1948 when annual precipitation was 70.39 inches compared with 18.20 inches of runoff :�imulated in 1959 when the maximum annual rainfall occurred. There were 4 years frorn 1948 through 1959 when annual rainfall was greater than 70 inches, and simulated ruinoff ranged from 9.06 inches to 19.60 inches. These facets iridicate why it is necessary to use long-term rainfall for model applications. Sinnply put, the driest and wettest years would not be the best selections. This is further complicated for plant nutrients or pesticide simulations. The determining factor is when runoff-producing rains occur relative to application dates of fertilizer and pesticides. Since percolatior� below the root zone mainly returns to stream flow, its movement to regional ground�Nater is essentially negligible. Therefore, the sum of runoff and percolation is eq;uivalent to total stream flow. Volumes of runoff and percolation are added in Table 4, and the respective components of nitrogen and phosphorus are summed in the t��ble as well. The equivalent ��tream flow masses of nitrogen and phosphorus losses were used to estimate stream flow concentrations of N and P. These values represent source mass and concentrations of N and P without attenuation. They are greater than the values reported by �HDF: (2004) using the WAM model for improved pasture. The difference befinreen these results and those of WAM probably result from initial values, climate, grazing intensity, estimated manure production, and manure characteristics. This is not intended to indicate that either modeling procedure is right or wrong, but merely indicates difFerences among model applications. 19 Table 4. The 50-yr average-annual unit precipitation, simulated runoff, percolation, stream flow, and nitrogen and phosphorus losses for Four Seasons off-site improved pasture area, OA. �COMFONENT = ;� � � UNIT DEPTH,MASS, , . . - ,:. .; CONCENTRATIQNS�UNITS:__,_�� .�._ _.. ... ,: _..._.._. _._.. . : �.._.�: - __��_.�___.._..� Precipitation _ 53.08 inches Runoff Storm flow 6.46 inches Percolation Return Flow 3.23 inches Stream flow Storm flow + Return flow 9.69 inches Nitrogen in runoff + sediment � Mass 2.88 Ibs/ac Concentration 1.97 mg/L Nitrogen leached Mass 1.88 Ibs/ac Concentration 2.57 m /L Nitrogen runoff + sediment + leached Mass 4.76 Ibs/ac Concentration 2.17 mg/L Phosphorus �in runoff + sediment Mass . 2.36 Ibs/ac Concentration 1.61 m�/L Phosphorus leached Mass <0.01 Ibs/ac Concentration 0.01 m /L Phosphorus runoff + sediment + leached Mass 2.36 Ibs/ac Concentration 1.08 m /L 6.1.1.1. Off-Site Sub-basins OA, OB, and OC Under the proposed plan, drainage of sub-basin OA will be improved with a larger culvert under SR 70. Flow from OA will combine with discharge frorn sub-basin OB to pass through a culvert under N.E. 12th Lane. Flow would further combine with that of sub-basin OC to a pfoposed bypass weir at N.E. 80th Ave. and Center St. A drainage canal/channel would be constructed south along side N.E. 80th Ave. to S.E. 8th St. Further conveyance of storm flow would continue to the Nubbin Slough STA. 20 Total drainage o�f the three sub-basins OA, OB, and OC is 1,191 acres. Storm runoff volumes, stream flow volumes, and plant nutrient loads are given for these sub-basins. The land use for all three sub-basins is improved pasture. Unit area data frc�m Table 4 were used to calculate the sub-basin volumes of storm flow and total stream flow with their respective nutrient loads for the three offsite sub-basins. Totals for the thrE:e off-site basins are given in Table 5. Total simulated ;stream flow volumes and loads are accumulated for sub-basins OA, OB, and OC at tlie lowest point, i.e. at the bypass weir at N.E. 80t" Ave and Center St. Beyond that point in the proposed drainage canal to the STA, reduction of loads of total phosphorus (TP) would be 15% as recommended by the SFWMD (2005) for swales and channel BMP's. In accordance with literature values for reduction of total nitrogen (TN) (Sec. 3.2 above), a conservative estimate of 60% loss in the drainage canal was used. When the stream flow reaches the STA, the total N load would be estimated as 2,271 Ibs and the total P load would be estimated as 2,570 Ibs. These estimated loads reaching the ST�� could be less because of flow in the drainage canal from the bypass weir. Estimated losses; of N and P in wet detention storage, such as the STA, are estimated as 25% and 60%�, respectively. Thus, annual stream flow loads leaving the STA would be estimated as approximately 1,703 Ibs for TN and 1,030 Ibs for TP entering the Nubbin Slough-Nlosquito Creek interceptor canal. 6.1.1.2. Off-site: Sub-basins OD, OE, and OF Storm water dr�inage from Four Seasons off-site sub-basins OD, OE, and OF discharge into a Mosquito Creek tributary channel. The combined flow enters the tributary channel below a proposed wet detention pond. Therefore, these sub-basins 21 were grouped for user convenience even though there is not a proposed retention basin or STA at the present time. Table 5. Simulated annual storm flow, return flow, and total stream flow volumes, and plant nutrient loads for ofF site sub-basins OA, OB, and OC. Sub-basin Basin OA O B OC Total Area, acres 235 270 686 1,191 Storm flow In/ac 6.46 6.46 6.46 6.46 Ac-ft 126.51 145.35 369.30 641.16 Return flow In/ac 3.23 3.23 3.23 3.23 Ac-ft 63.25 72.68 184.65 320.58 Stream flow In/ac 9.69 9.69 9.69 9.69 Ac-ft 189.76 218.02 553.94 961.73 Nitro en Storm flow Ibs/ac 2.88 2.86 2.90 2.88 Ibs 676.80 772.20 1,989.40 3,438.40 Return flow Ibs/ac 1.88 1.88 1.88 1.88 Ibs 441.80 507.60 1,289.68 2,239.08 Stream flow Ibs/ac 4.76 4.74 4.78 4.76 Lbs 1,118.60 1,279.80 3,279.08 5,677.48 Phos horus Storm flow Ibs/ac 2.36 2.54 2.56 2.53 Ibs 554.60 685.80 1,776.74 3,016.84 Return flow Ibs/ac <0.01 <0.01 <0.01 <0.01 Ibs 1.20 1.35 3.43 5.96 Stream flow Ibs/ac 2.36 2.54 2.56 2.53 Ibs 555.80 687.15 1,780.17 3,023.12 ,►T 22 The 50-yr GLEAAIIS model simulation results for the basins are summarized in Table 6. Data in Table 6 ir�clude flow volumes and N and P loads and concentrations. Combined volumes, loads, and concentrations are given in the table as well. Table 6. SimulatE:d annual storm flow, return flow and total stream flow volumes, and plant nutrient loacis for Four Seasons off-site sub-basins OD, OE, and OF. Sub-basin OD OE OF Residential + Improved Improved Basin Pasture Pasture Pasture Total Area, acres 99 109 49 257 Storm flow in/ac 8.26 7.23 6.46 7.44 ac-ft 68.14 65.67 26.38 160.19 Return flow in/ac 3.04 3.15 3.23 3.12 ac-ft 25.08 28.61 13.19 66.88 Stream flow in/ac 11.30 10.38 9.69 10.60 ac-ft 93.22 94.29 39.57 227.08 Nitro en Storm flow Ibs/ac 3.17 3.24 2.82 3.14 Ibs 315.81 353.16 138.19 807.16 Return flow Ibs/ac 1.19 1.27 1.73 1.33 Ibs 118.21 138.64 84.73 341.58 Stream flow Ibs/ac 4.36 4.51 4.55 4.47 Ibs 47124 491.80 222.92 1,148.74 Phos horus Storm flow Ibs/ac 1.33 2.07 2.35 1.84 Ibs 131.67 225.63 115.15 472.45 Return flow Ibs/ac <0.01 <0.01 <0.01 <0.01 Ibs 0.40 0.44 0.20 1.04 Stream flow Ibs/ac 1.33 2.07 2.35 1.84 Ibs 132.07 226.07 115.35 473.49 23 The model-simulated average-annual total nitrogen and total phosphorus for the three sub-basins is 1,149 Ibs and 474 Ibs, respectively. Using the same percentage conveyance losses as for sub-basins OA-OC and A thru K(60% reduction for TN and 15°/a reduction for TP), the estimated loads into Mosquito Creek would be 460 Ibs TN and 403 Ibs TP. These values are conservative estimates for use with a potential retention/detention basin or STA. Since outflow from the proposed wet detention basin in sub-basin J flows through the channel system in sub-basin OE, that outFlow load of TN and TP would add to the reduced load from sub-basins OD, OE, and OF. 6.1.2 On-site Sub-basins A thru K All on-site sub-basins in Four Seasons except sub-basins "J" and "JJ" have varying amounts of residential areas and both improved and un-improved pasture as seen in the 2006-based cover map (Williams, 2007). Sub-basins "J" and "JJ" are basically un- improved pasture. Much of the residential area consists of closely-spaced (manufactured) homes. Development of the subdivision houses including mobile began in the 1950's on relatively large lots. Homeowners wanted large lots where they could have animals, mainly horses. The homes were closely spaced near the county roadways. In essence, the building area represented a medium density residential with carports, storage buildings, horse shelters (one horse per lot), and other outbuildings. Driveways into individual residences were generally hard surface (shell or gravel) although some were paved. The residences are all on individual septic systems. Due to high water table conditions in the rainy season, septic tanks and drain fields were mounded to provide adequate septage drainage. Ponds were generally dug with borrow material used for the septic- system mounds. 24 A representative area was selected for GLEAMS simulations. One horse was assumed for each residenl:ial lot as for the improved pasture simulation. In addition to monthly application of hc►rse manure, septage from each household was also applied on a monthly basis u��ing nitrogen and phosphorus contents from the USDA-NRCS animal waste handbook (Barth, et al., 1992). Since an adaptation of the SCS curve number method (US Soil Conservation Service, 1972) is used in GLEAMS, a procedure was used for estimating a weighted curve number as given in the Georgia Stormwater Handbook (Debo and Associates, 2001.) A weighted curve number for the residential area was estimated by factoring in the impervious area and improved pasture. It should be remembered that the Myakka-Bassinger-Immokalee soil association without drainage perf'orm�s as a hydrologic soil group "D" (least permeable due to high water table), whereas in a drained condition, it responds to rainfall as hydrologic soil group A (USDA, 2003), i.e:. most permeable. The average hoiasehold size for Okeechobee County, 2.68 residents per household (SFWMD, 2005) was used with the average annual discharge of 16,425 gallons per capita (Otis et al., 1993). As with animal waste, septage was applied in the model monthly to sim��lify the parameter file. Effluent disposal (injection in GLEAMS application) varie:s from residence to residence, and generalizations were made to represent the diff�erent sub-basins. Hopefully these generalizations are appropriate and give reasonable rnodel simulation results. Results of the 50-yr model simulations for sub-basins A thru K are summarized in Tables 7a and 7'b. Average-annual storm flow, return flow, and stream flow volumes are given in the t�able as well as average annual nitrogen and phosphorus loadings and concentrations. The data are presented for each sub-basin individually for user convenience. Sub-basin groupings for on-site and off-site sub-basins will be given in a later section. Also, summary results of simulation are given for all Four Seasons sub-basins in appendix B, Tabl�� B-1. 25 Table 7a. Simulated storm flow, return flow, and stream flow volumes, and plant nutrient loads for Four Seasons sub-basins A thru F. Sub-basin q B C CC D E F Area, ac. 215 120 62 12 79 141 146 Storm flow in/ac 7.23 8.26 7.71 9.65 8.90 7.71 7.71 ac-ft 129.54 83.28 39.84 9.65 58.59 90.59 93.80 Return flow in/ac 3.45 3.04 3.10 2.88 2.96 3.10 3.10 ac-ft 56.44 30.65 16.02 2.88 19.49 36.42 37.72 Stream flow in/ac 10.38 11.30 10.81 12.53 11.86 10.81 10.81 ac-ft 185.48 113.94 55.85 12.53 78.08 127.02 131.52 Nitrogen Storm flow Ibs/ac 2.88 2.87 2.86 3.51 3.32 3.09 4.78 Ibs 618.32 344.91 177.15 42.12 262.28 435.69 697.25 Retum flow Ibs/ac 0.74 1.47 0.33 0.15 0.36 0.94 0.45 Ibs 150.33 176.49 20.38 1.80 28.16 132.69 65.20 Stream flow Ibs/ac 3.62 4.34 3.19 3.66 3.68 4.03 523 Ibs 776.65 521.40 199.53 43.92 290.44 568.38 762.45 Phosphorus Storm flow Ibs/ac 1.03 1;.73 0.35 0.14 0.76 1.52 1.05 Ibs 221.45 207.60 21.70 1.68 60.04 214.32 153.30 Retum flow Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Ibs 0.86 0.48 0.25 0.05 0.32 0.56 0.58 Stream flow Ibs/ac 1.03 1.73 .0.35 0.14 0.76 1.52 1.05 Ibs 222.31 208.08 21.95 1.73 60.36 214.88 153.88 � Table 7b. Simulated storm flow, return flow, and stream flow volumes, and plant nutrient loads for Four Seasons sub-basins G thru K and basin total. Sub-basin A - K G H I J JJ K Total Area, ac. 67 120 103 39 3.6 66 1,173.6 Storm flow in/ac 7.71 8.90 7.71 7.71 7.71 8.90 7.97 ac-ft 43.O:i 89.00 66.18 25.06 2.31 48.95 779.84 Return flow in/ac 3.10 2.96 3.10 3.10 3.10 2.97 3.07 ac-ft 17.3'I 29.60 26.61 10.08 0.93 16.34 300.49 Stream flow in/ac 10.8�1 12.86 10.81 10.81 10.81 11.87 11.01 ac-ft 57.5Ei 118.60 92.79 35.13 3.24 65.29 1,077.03 Nitrogen Storm flow Ibs/ac 3.07' 3.19 3.04 3.05 3.06 3.19 3.24 Ibs 205.E�9 368.40 313.12 118.95 11.01 210.54 3,805.43 Return flow Ibs/ac 0.68'� 0.14 0.76 0.26 0.26 0.14 0.64 Ibs 45.6!3 16.54 78.10 10.15 0.93 9.12 745.58 Stream flow Ibs/ac 3.7:� 3.33 3.80 3.31 3.32 3.33 3.88 Ibs 251.��8 384.94 391.22 129.10 11.94 219.66 4,551.01 Phosphorus Storm flow Ibs/ac 1.51 0.08 1.34 0.77 0.77 0.08 0.99 Ibs 101.17 9.60 138.02 30.03 2.77 5.28 1,166.96 Retum flow Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Ibs 0.2 i' 0.48 0.41 0.16 0.01 0.26 4.69 Stream flow Ibs/ac 1.5'I 0.08 1.34 0.77 0.77 0.08 0.99 Ibs 101.�44 10.08 138.43 30.19 2.78 5.54 1,171.65 27 In accordance with the procedure used in section 6.1.1.1 for sub-basins OA, OB, and r OC, corresponding reductions in TN and TP were estimated for sub-basins A through K. Reductions of TN and TP in the channel conveyance system from the uppermost sub- basin A to the proposed wet detention pond in sub-basin J would be 60% and 15%, respectively. Thus, the reduction of TN would be 3,407 Ibs with 2,271 Ibs entering the wet detention basin annually. The reduction of TP would be 176 Ibs with 996 Ibs entering the wet detention basin annually. Further reduction in the wet detention basin, 25% for TN and 60% for TP, would reduce wet detention basin outflow to 1,704 Ibs TN and 400 Ibs TP. Thus the total reduction of TN for the conveyance system and wet detention basin would be approximately 3,974 Ibs and a total reduction of 772 Ibs for TP. 6.1.3. Four Seasons Basin Summary Average annual discharge and nutrient loadings for the three sub-basin groups are summarized in Table 8. This table provides a reference for sub-basin groupings in the Four Seasons area (also, see Appendix B, Table B-1). 6.1.4. Storm Flow for 1-, 2-, and 3-day Durations Two overlapping 50-yr simulations were made with GLEAMS for each sub-basin in the Four Seasons area. The 75-yr Avon Park rainfall record was partitioned into the 1931- 80 and 1956-2005. Simulation results for the two periods were combined for the total record period. Annual maximum 1-, 2-, and 3-day rainfall depths were determined for the 75-yr record period, 1931-2005. A computerized Gumbel extreme-value procedure (Potter, 1949) was used to fit annual maxima data. The fitted data were used to calculate the 5-, 10-, 25-, 50-, and 100-yr storm depths for each duration. Fitted data are shown in Appendix A Figure 5. 28 Annual maximurn 1-, 2-, and 3-day runoff depths (storm flow) were determined for each sub-basin in Foiar Seasons to provide a relatively long-term record for frequency analysis. The d�ata are presented in Table 9 for each sub-basin. Off-site sub-basir� OA was selected to demonstrate results of the frequency analysis. The data are sho��vn graphically in Appendix A Figure 6. The same relative relationships occur befinreen 1-�day and 2-day and befinreen 2-day and 3-day storm flow as occurred for rainfall (Table 2 and Appendix A Figure 5). The GLEAMS m��del assumes that all daily storm runoff occurs on the day of rainfall. This is not true fc�r large areas, for example sub-basin OC. This simplification is not a problem regardirig runoff depths, but hydrograph generation is not simulated with GLEAMS. Storm drainage from rainfall in day 1 would not all drain out of the basin during the day of maximum rainfall. 29 Table 8. Average annual storm flow, return flow, and stream flow and nitrogen and i �� phosphorus loads for Four Seasons basin groups. Sub-basin Groups Basin OA, OB, & OC OD, OE, 8� OF A thru K Total Area, acres 1,191 257 1,173.6 2,621.6 Storm flow in/ac 6.46 7.44 7.97 7•24 ac-ft 641.16 160.19 779.84 1,581.19 Return flow in/ac 3.23 3.12 3.07 3.15 ac-ft 320.56 66.88 300.49 687.93 Stream flow in/ac 9.69 10.60 11.01 10.37 ac-ft 961.73 227.08 1,077.03 2,265.84 Nitrogen Storm flow Ibs/ac 2.88 3.14 3.24 3.07 Ibs 3,438.40 807.16 3,805.43 8,050.99 Return flow Ibs/ac 1.88 1.33 0.64 1.27 Ibs 2,239.08 341.58 745.58 3,326.24 Stream flow Ibs/ac 4.76 4.47 3.88 4.34 Ilis 5,677.48 1,148.74 4,551.01 8,377.23 Phosphorus Storm flow Ibs/ac 2.53 1.84 0.99 1.78 Ibs 3, 016.84 472.45 1,166.96 4,656.25 Return flow Ibs/ac <0.01 <0.01 <0.01 <0.01 Ibs 5.96 1.04 4.69 11.69 Stream flow Ibs/ac 2.53 1.84 0.99 1.78 Ibs 3,023.12 473.49 1,171.65 4,667.94 30 Table 9. Storm fllow depth for Four Seasons sub-basins for 5-, 10-, 25-, 50-, and 100-yr recurrence interv,als (table continued on next page). Recurrence Interval, years Duration 5 10 25 50 100 Sub-basin clays Storm Flow Depth, inches A 1 2.80 3.47 4.53 5.26 5.99 2 3.07 3.80 4.96 5.76 6.56 3 3.31 4.09 5.34 6.20 7.05 B 1 2.89 3.56 4.63 5.37 6.10 2 3.15 3.88 5.05 5.86 6.65 3 3.39 4.17 5.42 6.28 7.13 C 1 2.80 3.47 4.53 5.26 5.99 2 3.07 3.80 4.96 5.76 6.56 3 3.31 4.09 5.34 6.20 7.05 CC 1 3.08 3.76 4.86 5.62 6.37 2 3.36 4.10 5.29 6.12 6.93 3 3.59 4.38 5.63 6.50 7.36 D 1 2.98 3.86 4.74 5.49 6.23 2 3.25 3.98 5.16 5.98 6.78 3 3.49 . 4.27 5.52 6.38 7.24 E 1 2.80 3.47 4.53 5.26 5.99 2 3.07 3.80 4.96 5.76 6.56 3 3.31 4.09 5.34 6.20 7.05 F 1 2.80 3.47 4.53 5.26 5.99 2 3.07 3.80 4.96 5.76 6.56 3 3.31 4.09 5.34 6.20 7.05 G 1 2.80 3.47 4.53 5.26 5.99 2 3.07 3.80 4.96 5.76 6.56 3 3.31 4.09 5.34 6.20 7.05 H 1 2.98 3.66 4.74 5.49 6.23 2 3.25 3.98 5.16 5.98 6.78 3 3.49 4.27 5.52 6.38 7.24 I 1 2.80 3.47 4.53 5.26 5.99 2 3.07 3.80 4.96 5.76 6.56 3 3.31 4.09 5.34 6.20 7.05 J 1 2.80 3.47 4.53 5.26 5.99 2 3.07 3.80 4.96 5.76 6.56 3 3.31 4.09 5.34 6.20 7.05 31 �� 1 2.80 3.47 4.53 5.26 5.99 2 3.07 3.80 4.96 5.76 6.56 3 3.31 4.09 5.34 6.20 7.05 K 1 2.95 3.66 4.74 5.49 6.23 2 325 3.98 5.16 5.98 6.78 3 3.49 4.27 5.52 6.38 724 OA 1 2.61 3.27 4.32 5.05 5.77 2 2.91 3.64 4.81 5.61 6.41 3 3.17 3.96 5.24 6.12 6.99 OB 1 2.61 3.27 4.32 5.05 5.77 2 2.91 3.64 4.81 5.61 6.41 3 3.17 3.96 524 6.12 6.99 OC 1 2.61 3.27 4.32 5.05 5.77 2 2.91 3.64 4.81 5.61 6.41 3 3.17 3.96 5.24 6.12 6.99 OD 1 2.89 3.56 4.63 5.37 6.10 2 3.15 3.88 5.05 5.86 6.65 3 3.39 4.17 5.42 6.28 7.13 OE 1 2.73 3.39 4.44 5.17 5.88 2 3.00 3.73 4.89 5.69 6.48 3 3.24 4.03 5.28 6.14 6.99 OF 1 2.61 3.27 4.32 5.05 5.77 2 2.91 3.64 4.81 5.61 6.41 3 3.17 3.96 5.24 6.12 6.99 RANGE 1 2.61 - 3.08 3.27 - 3.76 4.32 - 4.86 5.05 - 5.62 5.77 - 6.37 2 2.91 -3.36 3.64-4.10 4.81 -5.29 5.61 -6.12 6.41 -6.93 3 3.17-3.59 3.96-4.38 5.24-5.63 6.12-6.50 6.99-7.36 6.1�.5. Storm Flow 1-day Peak Discharge Rates The GLEAMS model does not generate storm hydrographs, sedigraphs, or chemigraphs. However, it is essential to route eroded soil particles and organic matter through a field (basin) in order to accurately estimate sediment and sediment- associated pollutant yield. Since the time step in GLEAMS is one day, and precipitation input is daily amounts, it is not possible to generate continuous discharge rates and 32 concentrations dtaring a storm, or day. A procedure was developed in the CREAMS model (Knisel, 1�980) for estimating daily peak discharge rates as functions of field (drainage area) clharacteristics. The relationship, also used in GLEAMS, is q=200A��aSa�ssQ��LW)-a�s� ��� where q is discharge in cfs (ft3/sec), A is drainage area in mi2, S is slope in ft/mi, and Q is runoff (storm flc�w) depth in inches. The exponent C is C = 0.917 ,A o.o�ss �2) LW is the length:�vidth ratio estimated as LW = (I)2 / A (3) where I is the lerigth of the distance in miles of the most remote point of the drainage along the flow pa'�th to the outlet. This estimating procedure in equation (1) assumes a triangular hydrograph with a 1-day time base. It is recognized that all storm flow does not completely drain from a sub- basin in a 1-day period, especially sub-basin OC with a 686-acre drainage area. This does not invalid��te the peak-flow estimating procedure. However, it would not be appropriate to e:�timate peak discharge for the 2-day and 3-day storm flow with the above procedure„ The above relatic�nship was used to estimate peak discharge in each sub-basin in Four Seasons for the 'I-day storm flow for the 5-, 10-, 25-, 50-, and 100-yr recurrence interval (1-day storm depths given in Table 9). The 1-day peak �discharge rates were calculated by the peak-estimating procedure for Four Seasons b��sin groupings A-K, OA-OC, and OD-OF. The estimated peaks are 33 given in Table 11 for the 5-, 10-, 25-, 50-, and 100-yr recurrence intervals. These basin groupings represent the areas contributing to proposed STA's. Table 10. Peak discharge rate for 1-day storm flow for 5-, 10-, 25-, 50-, and 100-year recurrence interval in the Four Seasons sub-basins. Sub- Area 5-yr 10-yr 25-yr 50-yr 100-yr basin Acres Cubic Feet per Second (CFS) A 215 312 479 482 551 620 B 121 208 251 317 361 405 C 62 128 155 196 224 251 CC 12 34 41 51 57 64 p 79 159 190 239 272 305 E 141 207 250 318 363 408 F 146 231 280 356 406 456 G 67 122 148 187 213 239 H 120 173 208 261 298 333 I 103 182 220 279 318 357 � 3g 92 111 140 159 178 JJ 3.6 12 14 18 21 23 K 66 104 124 156 178 199 OA 235 301 369 475 547 617 OB 270 332 406 523 602 679 OC 686 562 691 892 1,029 1,164 OD 99 147 177 223 255 286 OE 109 191 220 280 320 359 OF 49 88 108 138 158 177 i � Table 11. Four SE�ason basin 1-day peak discharge rates. Area 5-yr 10-yr 25-yr 50-yr 100-yr Basin AcrE:s Cubic Feet per Second (CFS) A— K 1,17,3.6 1, 062 1,291 1, 567 1, 891 2,130 OA—OC 1,1��1 924 1,138 1,473 1,703 1,927 OD — OF 25'7 307 364 464 531 597 As in the case of the individual sub-basins, it is recognized that all the 1-day volumes would not drain fn�m these basins. However, the estimated peak discharge rates given in Table 11 are va�lid estimates of peak rates. 6.1.6. Alternate A,gricultural Management System (BMP) GLEAMS was de:veloped to represent a wide range of management systems. One such system is th�s date or dates of fertilizer application and another could be the rate of application. The c,ommon practice, as described above, is to apply 10-10-10 fertilizer on improved pastures. Some ranchers prefer fertilizers without phosphorus, particularly in view of the problems of phosphorus inflow to Lake Okeechobee (H. Williams, 2006). Florida soils in ge�neral contain enough phosphorus that it could easily be eliminated on pastures but probably not on row crops. Animal grazing of pastures results in re-cycling P in forage throuigh the digestive system of animals and deposition of animal waste back onto the pas,ture. Fertilizers, such as ammonium nitrate (33-0-0), nitrate of soda (15-0-16), and potassium nitrate (15-0-34) are commercially available. Since Florida soils generally are low in potassium, nitrate� of soda and potassium nitrate would satisfy that deficiency. 35 An alternative model application was made with an annual application of 200 Ibs/ac of 15-0-16 fertilizer on improved pasture within the Four Seasons sub-basin OA. The (, fertilizer application was the only change from the earlier simulation presented in Table 4(Sec. 6.1.1). Although GLEAMS considers forage production stress based upon nitrogen and phosphorus deficiencies, forage yields were not reduced due #o the absence of phosphorus fertilizer application. Results of the alternate model simulation are summarized in Table 12. The fertilizer change did not affect the water balance calculations—that is, runoff, percolation, and evapotranspiration remained the same for the 1931-80 simulation period reported in Table 4. Since nitrogen application was the same in each simulation, nitrogen losses remained the same. Only phosphorus mass and concentration are shown in Table 12 to demonstrate the effect of phosphorus fertilizer application. The elimination of P204 in the annual fertilizer application reduced the mass and concentration losses in runoff + sediment by about 20%. This is significant when the total area of improved pasture that drains into Lake Okeechobee. It should be kept in mind that the data in Table 11 represents source runoff and nutrient production without attenuation. The reduction in source-area phosphorus loss by using fertilizer without P204 indicated in Table 12 would be significant for reducing net P loss from off-site sub-basins OA, OB, and OC. The 1.06 Ib/ac reduction would be a total reduction of 1,263 Ibs for the 1,191- acre improved-pasture area proposed to be drained into the STA. Considering the acreage of improved pasture in the Lake Okeechobee drainage basin, this BMP would represent a significant reduction in total phosphorus delivered to the lake. 36 I Table 12. Average annual GLEAMS-simulated phosphorus mass and concentrations in runoff + sediment for 1931-80 with and without phosphorus fertilizer applications. Phosphorus Mass Discharge Phosphorus Concentration Discharge (Ik>s/ac) (mg/L) With Phosphorus Fertilizer ;?.36 1.61 Without Phosphorus Fertilizer 't .33 0.91 6.2. Okeechobe:e Southwest Corridor Land use in the Qkeechobee Southwest Corridor primarily consists of inedium-density single-family resid'ences along the drainage canals with agricultural use at the lower end of the canals. All residences have septic systems. The agricultural area probabfy will be urbanized to s�ome degree within the next 10 years at the rate of current growth in and around the City of Okeechobee. Schools and residential areas are already taking agricultural land ir� this Corridor from S.W. 7th Ave west beyond S.W. 32"d Ave. 6.2.1. Okeechobe:e Southwest Corridor Residential Area The HDR storm wrater master plan (2004) identified a flooding problem in the residential areas along S.W.7th Ave. in the vicinity of S.W. 23�d St. This was the only flooding problem identifiedl in the plan and there was not a recommended solution. Storm water frorri a medium-density single-family residential area discharges into the drainage canal al��ng S.W. 7th Ave. Building lots are relatively small with approximately 2 residences per acre, and all residences have septic tanks for sewage disposal. The 37 7tn Ave. canal originate well above the area where flooding occurs in the vicinity of S.W. 23`d St. Even though the residential area draining into the 7th Ave. canal is within the ( city limits, all residences have septic systems. Residential and commercial/municipal areas of considerable size drain into the S.W. 16t" Ave. canal, known as the "City Limits Ditch". Drainage into the canal originates well above SR 70 on the northwest section of the City of Okeechobee. Flooding also occurs in the Oak Park area, along S.W. 32"d Ave between S.W. 16t" St. and S.W. 23�d St. Storm water from paved streets without curbing, impervious areas, and lawns drain into swales which further drain into the canal. Some residents indicated (March 15, 2007) they had been promised a city sewage collection and disposal system within 3 years. At present, the lack of adequate drainage in the Southwest Corridor residential area causes septic drain problems during the rainy season. This study concentrates on storm water flow, return flow, and total stream flow with their respective nitrogen and phosphorus loads from designated basins in the Southwest Corridor. The basins were delineated by C.A. Smith & Associates in their storm water master plan (Rubio, 2007). 6.2.2. Okeechobee Southwest Corridor Model Simulations GLEAMS simulations were made for the sub-basins in the Okeechobee Southwest Corridor area using the same Avon Park, FL rainfall record as used for Four Seasons. The sub-basins were delineated by Rubio (2007) and are shown on Map 7(Appendix C). Basins 1— 10 drain outside the Southwest corridor and are not included in this study. The sub-basin designations and their respective areas are shown in Table 13. Some basins include self-contained ponds with their respective drainage areas that do 38 not empty into the drainage canals. These "non-contributing" areas are not included in the model represE�ntations. Likewise, some basin areas shown in subsequent tables may differ slightly from those in Table 13 in order to accurately calculate basin flow volumes and nutriient loads to the drainage canals. Also, since significant flooding is known to occur ir� the Oak Park residential area and it is proposed for remediation, separate model simulations were made for that area as well as for the entire basin 31 which contains O��k Park. Existing drainage canals are shown on Map 5 along S.W. 7th Ave (Okeechobee city limit), S.W. 16t" A.ve., S.W. 26t" Ave., and S.W. 32"d Ave. The City-limit canal drains directly into the pE;rimeter canal outside the levee around Lake Okeechobee. S.W. 16tn Ave. canal is div�erted into the S.W. 26th Ave. canal which further empties into the Kissimmee River. Drainage water in the S.W. 32"d Ave. canal currently discharges into the Kissimmee Ri:ver. However, storm water management plans may be changed to divert the S.W. 32."d Ave. canal drainage into existing ponds created by shell mining in lower basins of tf�e Southwest Corridor, i.e. basins 26, 27, and 30. Such diversions would be beneficial in reducing nitrogen and phosphorus loads discharging into the perimeter canal and ultimately into Lake Okeechobee. Some drainage fr��m basins 11, 13, 15, 17A, 17B, 17C, and 19 discharges into the S.W. 7in Ave. canal. F�or convenience in calculations, 100% of storm water and total stream flow from these basins is assumed to drain into the S.W. 16th Ave. canal. Similar assumptions are rnade to simplify calculations for the S.W. 26th Ave. and S.W. 32"d Ave. canals. The gen��ral topographic slope is in the southwesterly direction (Appendix C., Map 7). Soils in the Southwest Corridor are generally in the same soil association as those in Four Seasons. A detailed soils map is shown on Map 8(Appendix C) and are tabulated in Table 3, Appendix D. Land use by basin in the Southwest Corridor are given in Appendix D, Tabl�� 4. 39 Table 13. Okeechobee Southwest Corridor basins and drainage areas (from Rubio, 2007). 40 All houses in the� residential areas of the Southwest Corridor have individual septic systems. The septage is considered "injected" below the soil surFace, and as such is not entrained into the storm water. It can and does move with percolate in the model applications, and imay affect return flow. Land use in each basin was determined from Maps 9 and 10, Appendix C. These data were used to esi:imate the necessary parameters input into the GLEAMS model for long-term simulati'ons. Since the locally known "Oak Park" residential area in Basin 30 is a principal are�� of concern for flooding, that area is delineated in Table 13 but it is also a part of the Ilarger Basin 30. Basins are grouped to obtain storm water, return flow, and total stream flow volumes and total nitroger� and phosphorus loads for each drainage canal. Results of model simulations are grouped for the basins in tables to estimate totals for each drainage canal. Soils in the southern-most part of the Okeechobee Southwest Corridor differ from those in the northern b��sins. The Immokalee soil dominates the northern basins to SW Wolff Street (SW 28th St.) and the Wobasso series dominates south of SW Wolff St. Obviously this not a clear line of demarcation, but Lake Okeechobee sand deposits extended approximately to SW Wolfe St. in geologic time. The flat topography and different soils ar�a prominent indicators of present day land use, i.e. old city limits (south), shell mirn�s, and present-day sod farms. Model simulations were made for the basins draining into the SW 7th Ave. drainage canal. Results c�f the 50-yr simulation are summarized in Table 14. Annual-average unit-area and volume data are shown in the table for storm flow, return flow, and total stream flow. Average-annual unit-area and basin loads are shown for nitrogen and phosphorus as w��ll. 41 Table 14. The 1931-80 average annual storm flow, return flow, and steam flow and average annual nitrogen and phosphorus loads for the Okeechobee SW Corridor, SW 7tn Ave. canal. Basin 12 14 16 17A 18 19 20 Total Area, ac. 274 203 66 65 332 85 324 1,349 Storm flow, in. 11.60 9.65 11.58 6.31 9.16 6.77 12.87 10.44 Vol. ac-ft 264.87 163.25 63.70 34.18 253.43 47.95 347.49 1,173.63 Return flow, in. 2.62 2.87 1.10 2.52 2.36 2.42 2.39 2.45 Vol. ac-ft 59.82 48.55 6.05 13.65 65.29 17.14 64.53 275.03 Stream flow, in. 14.22 12.52 12.68 8.83 11.52 9.19 15.26 12.99 Vol. ac-ft 324.69 211.80 69.75 47.83 318.72 65.09 412.02 1,448.66 NITROGEN Storm flow, Ibs/ac 3.84 3.19 3.81 2.11 3.03 2.45 4.29 3.51 Ibs 1,052.60 648.44 251.57 137.32 1,007.32 208.55 1,389.21 4,731.01 Return flow, Ibs/ac 0.33 0.51 0.04 0.18 2.08 1.46 2.76 1.42 Ibs 89.83 102.95 2.86 11.39 689.43 123.74 894.41 1,914.61 Stream flow, Ibs/ac 4.17 3.70 3.85 2.29 5.11 3.91 8.05 4.93 Ibs 1,142.43 751.39 254.43 148.71 1,696.43 332.29 2,283.62 6,655.62 PHOSPHORUS Storm flow, Ibs/ac 0.73 0.87 0.07 0.26 0.31 1.45 2.56 1.08 Ibs 198.80 176.61 4.93 16.88 102.27 123.28 829.32 1,452.19 Return flow, Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Lbs 0.38 0.32 0.04 0.09 0.53 0.10 0.39 1.85 Stream flow, 2.56 Ibs/ac 0.73 0.87 0.07 0.26 0.31 1.45 1.08 Ibs 199.18 176.73 4.93 16.97 102.80 123.38 831.88 1,454.04 42 A different repre;�entation . was necessary for the Okeechobee Southwest Corridor compared with th�� residential area in Four Seasons. Some areas within the city limits are on the city sewage collection systems while most all residences have septic tanks. These are treate�d separately and distinctly different in the several basins affected. Relative residenti�al density is considered in the different basins as well. For example, there are several "retirement villages" that have more impervious area, less lawns, and smaller lots. Thu:�, the septage is greater per unit area than where lots are larger, such as in the Oak Parlc area. Model simulation results for the SW 16t" Ave., SW 26t" Ave., and SW 32"d Ave. canals are shown in Tak�les 15-17. Storm water and stream flow from these three drainage canals will dischai•ge into proposed STA's or wet detention ponds. In the following tables, areas of some basins do not agree with those in Table 13. There is significant amounts of ponds in the basins that do not drain such as in the previously excav��ted shell mines. Those ponds do not contribute flow to the respective - drainage canals. The slightly-reduced areas are necessary to accurately calculate discharge to the c:anals. Since localized fl��oding occurs mainly in the Oak Park area of the Southwest Corridor, that residential area was simulated separately. Oak Park is approximately 83 acres in size and is considered medium density residential, all on septic tanks. Although it is within the much larger basin 30, subsurFace storm-water drainage is proposed to help alleviate flooding. The proposal includes pump installation to discharge the storm water into the SW 32"d Ave. canal. Results of the model simulation and analysis are given in Table 18. These data represent the source area, and should be helpful in conveyance and pump design�. Drain pipes with risers will place the source closer to the pump and the higher nitroge:n and phosphorus loads would be more applicabJe for design than the basin 30 data in -i�able 17. The Oak Park contribution to basin 30 discharge to the canal assumes flow ovE:r the soil to the basin outlet. 43 Table 15. The 1931-80 simulated average annual storrn flow, return flow, and steam flow and average annual nitrogen and phosphorus loads for the Okeechobee SW ` Corridor, SW 16th Ave canal. Basin Total 11 13 15 176 17C 21 , 22 SW 16�' Area, ac 326 220 78 43 115 105 320 1,217 Storm flow, in. 9.65 826 6.30 10.42 12.95 12.87 10.54 9.92 ac-ft 262.16 151.43 40.95 37.34 120.87 112.61 281.07 1,006.43 Return flow, in, 2.87 3.04 2.51 1.41 0.78 2.35 2.57 2.48 ac-ft 77.97 55.73 16.32 5.05 7.48 20.56 68.53 251.64 Stream flow, in. 12.52 11.30 8.81 11.83 13.73 15.12 13.11 12.40 ac-ft 340.13 207.16 57.27 42.39 128.35 133.17 349.60 1,258.07 Nitrogen Storm flow Ibs/ac 3.19 2.78 2.37 3.45 4.28 4.26 3.61 3.35 Ibs 1,040.17 610.70 154.57 148.31 492.28 447.54 1,155.37 4,078.88 Return flow Ibs/ac 0.19 0.24 1.98 0.30 1.38 0.29 0.76 0.59 Ibs 61.82 53.78 154.36 12.83 158.80 30.79 243.60 715.98 Stream flow Ibs/ac 3.38 3.02 4.35 3.75 5.66 4.55 4.37 3.94 Ibs 1,101.99 664.48 338.93 164.14 651.08 478.33 1,398.97 4,794.86 Phosphorus Storm flow Ibs/ac 0.14 0.78 1.73 0.31 0.18 0.71 0.82 0.59 Ibs 45.76 111.25 134.68 13.16 20.41 74.92 261.26 721.44 Return flow Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Ibs 0.46 0.35 0.11 0.03 0.07 0.13 0.45 1.60 Stream flow Ibs/ac 0.14 0.78 1.73 0.31 0.18 0.71 0.82 0.59 Ibs 46.22 171.60 134.79 13.19 20.48 75.05 261.71 723.04 44 Tabie 16. The 1!a31-80 simulated average annual storm flow, return flow, and steam flow and averagE: annual nitrogen and phosphorus loads for the Okeechobee SW Corridor, SW 26t" Ave canal. Basin Total �!3 24 25A 25g 2g SW 26tn Area, ac 303 97 339 21.8 297 1,057.8 Storm flow in. 8.90 6.30 5.89 7.30 7.23 7.04 ac-ft 22��.73 50.93 166.39 13.26 178.94 634.25 Return flow in. 2.96 2.51 2.59 2.29 3.15 2.84 ac-ft 74.74 20.29 70.63 4.16 77.96 250.32 Stream flow In. 11.86 8.81 8.48 9.59 10.38 9.88 ac-ft 29!3.47 71.22 237.02 17.42 256.90 884.57 Nitrogen Storm flow Ibs/ac 3,.04 2.38 2.05 2.41 2.47 2.49 Ibs 92;?.53 231.18 695.07 52.55 732.85 2,634.18 Return flow Ibs/ac 0..40 2.36 1.99 0.17 0.27 1.05 Ibs 12��.93 228.76 673.82 3.63 79.29 1,106.43 Stream flow Ibs/ac 3.34 4.74 4.04 2.58 2.74 3.54 Ibs 1,0��3.46 459.94 1,368.89 56.18 812.14 3,740.61 Phosphorus Storm flow Ibs/ac 0.90 1.85 1.70 0.11 0.40 1.09 Ibs 271.51 179.54 577.69 2.31 117.69 1,148.74 Return flow Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Ibs 0.48 0.14 0.41 0.03 0.53 1.59 Stream flow Ibs/ac 0.90 1.85 1.70 0.11 0.40 1.09 Ibs 271.99 179.68 578.10 2.34 118.22 1,150.33 45 Table 17. The 1931-80 simulated average annual storm flow, return flow, and steam ( flow and average annual nitrogen and phosphorus loads for the Okeechobee SW Corridor, SW 32"d Ave canal. Total 26 27 29 30 31 SW 32nd Area,ac 219 212 331 318 72 1152 Storm flow � in. 6.30 8.26 7.25 826 5.89 7.45 ac-ft 114.98 145.93 199.8 218.89 35.34 715.12 Return flow in. 2.51 3.04 3.17 3.04 2.59 2.95 ac-ft 45.81 53.71 87.44 80.56 15.54 283.05 Stream flow In. 8.81 11.30 10.42 11.30 8.58 10.40 ac-ft 160.79 199.64 287.42 299.45 50.92 998.17 Nit�ogen Storm flow Ibs/ac 2.15 2.83 2.40 2.77 2.09 2.51 Ibs 470.58 598.94 794.22 880.97 150.18 2,894.89 Return flow Ibs/ac 0.61 0.18 0.11 0.18 1.21 0.28 Ibs 134.22 37.48 37.24 58.77 87.47 321.18 Stream flow Ibs/ac 2.76 3.01 2.51 2.95 3.30 2.79 Ibs 604.80 636.42 831.46 939.74 237.65 3,216.07 Phosphorus Storm flow ibs/ac 0.86 0.35 0.01 0.46 1.20 0.43 Ibs 187.40 74.88 1.83 147.36 86.72 498.19 Return flow Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Lbs 0.31 0.34 0.33 0.51 0.09 1.58 Stream flow Ibs/ac 0.86 0.35 0.01 0.46 1.20 0.43 Ibs 187.71 75.22 2.16 147.87 86.81 499.77 :. Table 18. The 1�a31-80 simulated average annual storm flow, return fiow, and steam flow and average: annual nitrogen and phosphorus loads for the Okeechobee SW Corridor, 83-acre Qak Park residential area. UNIT DEPTHS & MASS and COMPONET VOLUMES & LOADS Storm flow, inc:hes 10.54 ac-ft 79.90 Return flow, inc;hes 2•77 ac-ft 19.16 Stream flow, inc:hes 13.31 ac-ft 92.06 NITROGEN . Storm flow, Ib:�/ac 3.52 Ib�� 292.99 Return flow, Ib:�/ac 2•'� � Ib:� 175.29 Stream flow, Ib:�/ac 5.63 Ib:� 468.28 PHOSPHORUS Storm flow, Ib:�/ac 2.11 Ib:� 175.13 Return flow, Ib:�/ac <0.01 Ib:� 0.33 Stream flow, Ib:�/ac 2.11 Ib:� 175.46 47 6.2.3. Okeechobee Southwest Corridor Summaries Data for the four drainage canals in the Southwest Corridor are summarized in Table 19. The SW 7t" Ave. canal is proposed to drain into an STA or directly into the Lake Okeechobee rim canal. The SW 16t" , SW 26t" , and SW 32"d canals are totaled in Table 19. Discharges from these canals may or may not ultimately drain into a single STA, but the totals are presented in Table 19 for user convenience. A map of average-annual storm water nitrogen by basin is shown in Appendix C, map 11 for the Southwest- Corridor area. A similar map of average-annual storm water phosphorus by basin is shown in Appendix C, map 12. These maps provide a ready- reference of relative loads by basin in the Okeechobee Southwest Corridor Assumptions for nitrogen and phosphorus reductions from the literature used for the Four Seasons area conveyance channels were also used for drainage canals in the Okeechobee Southwest Corridor. Reductions in the conveyance system are shown in Table 20. Also, the same reductions for N and P losses in wet detention ponds (STA's) -, used in the Four Seasons area were used in the Southwest Corridor. The reduced N and P loads for canal losses in Table 20 were used as loadings to wet detention areas to estimate the reduced N and P discharges from the detention areas. These loads out of the detention areas represent approximate loads to conveyance channels as ultimate discharge to Lake Okeechobee. Reductions in the retention areas are shown in Table 21. 48 Table 19. Averag�� annual storm flow, return flow, and stream flow and average annual nitrogen and phosphorus loads for the Okeechobee Southwest Corridor. Drainage Canal SW 16 , sw 2s , SW 7 Ave SW 16 Ave SW 26 Ave SW 32" Ave SW 32"d Totals Area, acres 1, 349 1, 217 1, 058 1,152 3,427 Storm flow, in 10.44 9.92 7.04 7.45 8.24 ac-ft 1,173.63 1, 006.43 634.25 715.12 2, 355.80 Return flow, in 2.45 2.48 2.84 2.95 2.75 ac-ft 275.03 251.64 250.32 283.05 785.01 Stream flow, in 12.99 12.40 9.88 10.40 11.00 ac-ft 1,448.66 1,258.07 884.57 998.17 3,140.81 NITROGEN Storm flow, Ibs/ac 3.51 3.35 2.49 2.51 2.80 Ibs 4,731.01 4,078.88 2,634.18 2,894.89 9,607.95 Return flow, Ibs/ac 1.42 0.59 1.05 0.28 0.63 Ibs 1,914.61 715.98 1,106.43 321.18 2,143.59 Stream flow, I bs/ac 4.93 3.94 3.54 2.79 3.43 Ibs 6,655.62 4,794.96 3,740.61 3,216.07 11,751.54 PHOSPHORUS Storm flow, Ibs/ac 1.08 0.59 1.09 0.43 0.69 Ibs 1,452.19 721.44 1,148.74 498.19 2,368.37 Return flow, Ibs/ac <0.01 <0.01 <0.01 �0.01 <0.01 Ibs 1.85 1.60 1.59 1.58 4.77 Stream flow, Ibs/ac 1.08 0.59 1.09 0.43 0.69 Ibs 1,454.04 723.04 1,150.33 499.77 2,373.14 49 Table 20. Total nitrogen and totai phosphorus reductions in the Okeechobee Southwest Corridor drainage canals. TN Nitrogen TN TP Phosphorus TP Input Reduction Discharge Input Reduction Discharge Canal Ibs % Ibs Ibs % Ibs SW 7 Ave 6,655.62 60 2,662.25 1,454.04 15 1,235.93 SW 16 Ave 4,794.86 60 1,917.94 723.04 15 614.58 SW 26 Ave 3, 740.61 60 1,49624 1,150.33 15 977.78 SW 32" AVe 3,216.07 60 1,286.43 499.77 15 424.80 Total 18,407.16 60 7,362.86 3,827.18 15 3,253.10 Table 21. Total nitrogen and total phosphorus reductions in the Okeechobee Southwest Corridor STA's/wet detention management areas. TN Nitrogen TN TP Phosphorus TP Input Reduction Discharge Input Reduction Discharge Canal Ibs % Ibs Ibs % Ibs SW 7 Ave 2,662.25 25 1,996.69 1,235.93 60 494.37 SW 16 Ave 1,917.94 25 1,438.46 614.58 60 245.83 SW 26 Ave 1,496.24 25 1,122.18 977.78 60 391.11 SW 32" AVe 1,286.43 25 964.82 424.80 60 169.92 Total 7,362.86 25 5,522.15 3,253.10 60 1,301.23 50 6.2.4. Okeechobe�e Southwest Corridor Storm Runoff for 1-, 2-, and 3-Day Durations Annual maximum storm runoff was determined for 1-, 2-, and 3-day durations for the Okeechobee Southwest basins and drainage canals. The Gumbel extreme-value procedure (Potter, 1949) was used to estimate the 5-, 15-, 20-, 50-, and 100-yr expected storm fl��w depths for each duration. Results of the frequency analyses are shown in Table 2:? for basins in the SW 7th Ave canal drainage. Similar analyses were made for SW 16tr' Ave, SW 26t" Ave, and SW 32"d Ave canals, also. Frequency data are shown in Tables 23 — 25, respectively, for these canals. As seen in Table�: 22 - 25, there is less difference befinreen 2-day and 3-day storm flow than between the 1-day and 2-day events. This indicates that rainfall events last little more than two days even where hurricanes occur in some years. 6.2.5. Okeechobe:e Southwest Corridor Storm Flow Peak Discharge Rates Peak rates of dis��harge were estimated for each basin in the Okeechobee Southwest Corridor using the: procedure outlined in Sec. 6.1.5. The peak rates were determined using the peak 1-day depths by recurrence interval in Tables 22 — 25. The 1-day peak discharge rates in cubic feet per second (cfs) for the 5-, 10-, 25-, 50-, and 100-yr recurrence interv�ils are shown in Table 26. The peak dischan�e rates for 1-day storm depths were calculated for each of the SW 7tn Ave, SW 16th Ave, SW 26th Ave, and SW 32"d Ave canals, also. These canal peak discharge data are given in Table 27. 51 Table 22. Storm flow depths for Okeechobee Southwest SW 7th Ave. basins and canal for 1-, 2-, and 3-day durations for 5-, 10-, 25-, 50-, and 100-yr recurrence intervals. Recurrence Interval Basin/ 5- r 10- r 25- r 50- r 100- r Duration Inches 12 1-day 3.30 4.01 5.14 5.92 6.69 2-da 3.61 4.38 5.61 6.46 7.29 3-day 3.85 4.66 5.94 6.82 7•70 14 1-da 3.07 3.76 4.86 5.62 6.37 2-da 3.36 4.10 5.29 6.12 6.93 3-da 3.59 4.38 5.63 6.50 7.36 16 1-da 3.30 4.01 5.14 5.92 6.69 2-da 3.61 4.38 5.61 6.46 7.29 3-da 3.85 4.66 5.94 6.82 7•70 17A 1-da 2.59 3.22 4.24 4.94 5.64 2-da 2.80 3.49 4.59 5.35 6.10 3-da 3.00 3.73 4.90 5.71 6.52 18 1-da 3.02 3.70 4.78 5.52 6.26 2-da 3.30 4.03 5.19 6.00 6.80 3-da 3.48 4.24 5.45 6.28 7.11 19 1-da 2.67 3.31 4.34 5.06 5.76 2-da 2.89 3.59 4.70 5.47 6.23 3-da 3.08 3.82 5.00 5.81 6.61 20 1-da 3.43 4.15 5.30 6.09 6.87 2-da 3.77 4.55 5.80 6.66 7.51 3-da 4.02 4.83 6.13 7.03 7.92 SW 7 Ave Canal 1-da 3.16 3.85 4.96 5.72 6.46 2-da 3.45 4.20 5.40 6.26 7.04 3-da 3.67 4.46 5.70 6.57 7.43 � 52 Table 23. Storm f`low depths for Okeechobee Southwest Corridor, SW 16th Ave. basins and canal for 1-, 2-, and 3-day durations for 5-, 10-, 25-, 50-, and 100-yr recurrence intervals. Recurrence Interval Basin/ 5- r 10- r 25- r 50- r 100- r Duration Inches 11 1-da �3.08 3.76 4.86 5.62 6.37 2-da 3.36 4.10 5.29 6.12 6.93 3-da 3.59 4.38 5.63 6.50 7.36 13 1-da 2.89 3.56 4.63 5.37 6.10 2-da 3.15 3.88 5.05 5.86 6.65 3-da 3.39 4.17 5.42 6.28 7.13 15 1-da 2.59 3.22 4.24 4.94 5.63 2-da 2.80 3.49 4.59 5.35 6.10 3-da 3.00 3.79 4.90 5.71 6.51 17B 1-d a 3.17 3.86 4.97 5.74 6.49 2-da 3.47 4.22 5.42 6.25 7.07 3-da 3.68 4.46 5.71 6.57 7.42 17C 1-da . 3.43 4.15 5.30 6.09 6.88 2-da 3.79 4.57 5.82 6.68 7.53 3-day 4.04 4.85 6.16 � 7.06 7.94 21 1-da 3.43 4.15 5.29 6.09 6.87 2-da 3.77 4.55 5.80 6.66 7.51 3-da 4.02 4.83 6.13 7.03 7.92 22 1-da 3.18 3.87 4.99 5.75 6.51 2-da 3.48 4.23 5.44 6.27 7.10 3-da 3.71 4.50 5.76 6.64 7.50 SW 16 Ave Canal 1-da 3.08 3.76 4.86 5.61 6.35 2-da 3.14 4.11 5.30 6.12 6.93 3-da 3.60 4.38 5.60 6.50 7.34 53 Table 24. Storm flow depths for Okeechobee Southwest SW 26t" Ave. basins and canal for 1-, 2-, and 3-day durations for 5-, 10-, 25-, 50-, and 100-yr recurrence intervals. Recurrence Interval Basin/ 5- r 10- r 25- r 50- r 100- r Duration Inches 23 1-da 2.89 3.66 4.74 5.49 6.23 2-da 3.25 3.98 5.16 5.97 6.78 3-da 3.29 4.27 5.52 6.38 7.24 24 1-da 2.59 3.22 4.24 4.94 5.63 2-da 2.80 3.49 4.59 5.35 6.10 3-da 3.00 3.73 4.90 5.71 6.51 25A 1-da 2.51 3.14 4.14 4.83 5.52 2-da 2.72 3.40 4.49 5.24 5.99 3-da 2.91 3.64 4.81 5.62 6.41 25B 1-da 2.75 3.41 4.45 5.17 5.88 2-da 2.99 3.69 4.82 5.60 6.37 3-da 3.17 3.91 5.10 5.92 6.72 28 1-da 2.73 3.39 4.44 5.17 5.88 2-da 3.00 3.73 4.89 5.69 6.48 3.-da 3.24 4.03 5.28 6.14 6.99 SW 26 Ave Canal 1-da 2.69 3.37 4.41 5.13 5.84 2-da 2.96 3.67 4.81 5.59 6.37 3-da 3.13 3.94 5.16 6.00 6.83 54 Table 25. Storm flow depths for Okeechobee Southwest Corridor SW 32"d Ave basins and canal for 1-, 2-, and 3-day durations for 5-, 10-, 25-, 50-, and 100-yr recurrence intervals. Recurrence Interval Basin/ :�- r 10- r 25- r 50- r 100- r Duration Inches 26 1-da �'..59 3.22 4.24 4.94 5.63 2-da 2.80 3.49 4.59 5.35 6.10 3-da �'..99 3.73 4.90 5.71 6.51 27 1-da �?.89 3.56 4.63 5.37 6.10 2-da :3.15 3.88 5.05 5.86 6.65 3-da :3.39 4.17 5.42 6.28 7.14 29 1-da �?.73 3.39 4.44 5.17 5.89 2-da :3.01 3.73 4.39 5.70 6.49 3-da :3.25 4.03 5.28 6.15 7.00 30 1-da 2.89 3.56 4.63 5.37 6.10 2-da :3.15 3.88 5.05 5.86 6.65 3-da :3.39 4.17 5.42 6.28 7.14 31 1-da .�.51 3.14 4.14 4.83 5.52 2-da .�.72 3.40 4.49 5.24 5.99 3-da :?.91 3.64 4.81 5.62 6.41 SW 32" Ave Canal 1-da :?.76 3.42 4.47 5.20 5.91 2-da :3.02 3.74 4.88 5.68 6.46 3-da :3.24 4.01 5.24 6.09 6.93 55 Table 26. Peak discharge rates for 1-day storm flow for 5-, 10-, 25-, 50-, and 100-yr recurrence intervals in the Okeechobee Southwest Corridor. Area 5-yr 10-yr 25-yr 50-yr 100-yr Basin Acres Cubic Feet per second (CFS) 11 326 350 420 529 604 677 12 274 453 538 672 762 850 13 243 252 304 386 441 495 14 203 249 299 376 429 480 15 78 105 127 162 186 209 16 65 120 142 177 201 113 17A 65 94 114 145 166 187 �7g 53 g4 g9 124 140 156 17C 142 190 225 280 317 353 18 332 325 390 492 561 629 �g 85 111 134 171 195 219 20 324 453 538 672 762 850 21 105 161 191 237 268 299 22 320 355 424 533 606 679 23 301 345 427 539 616 691 24 g7 124. 150 191 219 247 25A 367 250 306 393 452 510 25g 2g 43 52 65 75 83 2g 233 222 270 346 397 447 27 246 239 289 366 418 468 28 303 325 395 504 579 650 29 331 334 406 519 596 670 30 353 338 409 519 593 666 Oak Park 83 179 213 267 303 338 31 72 97 118 151 173 194 56 Table 27. Peak ciischarge rates for 1-day storm flow for 5-, 10-, 25-, 50-, and 100-yr recurrence intervals in the Okeechobee Southwest Corridor drainage canals. Drainage Ar�ea, 5-yr 10-yr 25-yr 50-yr 100-yr Canal acres Cubic Feet per Second (CFS) SW 7 Ave 1,349 932 1,120 1,417 1,617 1,811 SW 16 Ave 1,��17 790 950 1,205 1,377 1,544 SW 26 Ave 1,()58 683 841 1,079 1,241 1,399 SW 32" Ave 1,'I 52 714 871 1,116 1,285 1,446 57 i.0 REFERENCES Barth, C., T. Powers, and J. Rickman. 1992. Chapter 4: Agricultural waste characteristics. National Engineering Handbook, Part 651, Agricultural Waste Management Field Handbook. U.S.D.A.-National Resources Conservation Service, Washington, D.C. pp. 4-1-4-24. Bottcher, A.B., and H.H. Harper. 2003. Estimation of best management practices and technologies: phosphorus reduction perFormance and implementation costs in the northern Lake Okeechobee watershed. Letter report submitted to the SFWMD, West Palm Beach, Florida. Bottcher, A.B., J.G. Hiscock, and B.M. Jacobson. 2002. WAMView. A GIS Approach to watershed assessment modeling. Proc. of the Watershed 2002 Pre-Conference Modeling Workshop, Ft. Lauderdale, FL. Crane, L. 2007. Personal communication. Debo and Associates. 2001. Georgia stormwater management manual—Volume 2: Technical Handbook. First Edition. Atlanta, Georgia. 797 pp. Harper, H.H. 1999. Pollutant removal efficiencies for typical stormwater management systems in Florida. Florida Water Resources Journal, September, pp. 22-26. HDR Engineering, Inc. 2004. Comprehensive stormwater master plan for Okeechobee County. West Palm Beach, Florida. 157 pp. Heatwole, C.D., K.L. Campbell, and A.B. Bottcher. 1987. Modified CREAMS hydrology model for Coastal Plain flatwoods. Trans. of the Amer. Soc. Agri. Engr. 30(4):1014- 1022. 58 , I i Knisel, W.G. (Ed.). 1980. CREAMS: A field scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems. U.S. Dept. of Agri.-Sci. & Edu. Admin., Conserv. I�es. Rep. No. 26. 640 pp. Knisel, W.G., P. '�(ates, J.M. Sheridan, T.K. Woody, L.H. Allen, and L.E. Asmussen. 1985. Hydrology and hydrogeology of upper Taylor Creek watershed, Okeechobee County, Florida: C)ata and Analysis. U.S. Dept. of Agri., Argi. Res. Serv., ARS-25. 159 .. Leonard, R.A., W,G. Knisel, and D.A. Still. 1987. GLEAMS: Groundwater Loading Effects of Agricultural Management Systems. Trans., Amer. Soc. of Agri. Engr. 30:1403-1418. Livingston, E.H. '1995. The evolution of Florida's stormwater/watershed management progress. EPA/625/R-95/003. Cincinnati, OH. pp. 14-27. Nicks, A.D. 1998. Climate generation database. Washington, D.C. CD-ROM. Otis, R.J., D.L. ��nderson, and R.A.Apfel. 1993. Onsite sewage disposal system research in Florida, an evaluation of current onsite sewage disposal system (OSDS) practices in Florida. Contract No. LP-596. Florida Dept. of Health and Rehabilitative Services, Tallaha��see, FL. PEER Consultant.�, P.C. 2004. Flow diversion to the Nubbin Slough Sta.: Evaluation of alternatives. S��ience and Engineering Support Services, Contract No. C-15983, WO 01-05. Miami Lakes, Florida. Potter, W.D. 19��9. Simplification of the Gumbel method for computing probability curves. U.S. Dep1t. of Agri., Soil Conserv. Serv. SCS-TP-78. 22 pp. Rubio, O. 2007. 'Personal communication. 59 Schueler, T.R. 1995. Stormwater pond and wetland options for stormwater quality control. EPA/625/R-95/003. Cincinnati, OH. pp. 341-346. � South Florida Water Management District. 2005. Phosphorus budget method for assessing the impact of land use change on phosphorus loads leaving a land parcel. South Florida Water Management District, West Palm Beach, Florida. South Florida Water Management District. Application of the CREAMS-WT computer simulation model for assessing the impact of land use change on phosphorus loads leaving a land parcel. West Palm Beach, Florida. Strassler, E., J. Pritts, and K. Strellec. 1999. Preliminary data summary of urban stormwater best management practices. EPA-821-R-99-013. USEPA, Washington, D.C. U.S. Dept. of Agri.-Natural Resources Conservation Service. 2003. Soil survey of Okeechobee County, Florida. 135 pp. +56 plates. U.S. Soil Conservation Service. 1972. SCS National Engineering Handbook. Sec. 4, Hydrology. 548 pp. Williams, H. 2006. Personal communication. Williams, S. 2007. Global Mapping. Personal communication. Wotzka, P., and G. Oberts. 1988. The water quality performance of a detention basin- wetland treatment system in an urban area. In: Nonpoint Pollution: Policy, economy, management, and appropriate technology. Amer. Water Resources Assoc.:237-247. Zhang, J. 2006. Personal communication. 60 i � � i /\ ��L'mYV��40 W���V�l�YllO�hd+ Figure 1. Map of ��torm water study area showing Four Seasons and Okeechobee Southwe�st Corridor ...........................................................................62 Figure 2. Annual ��recipitation, Avon Park, FL, 1931-2005 .....................................63 Figure 3. Cumulaf;ive precipifation, Avon Park, FL 1931-2005 .................................64 Figure 4. Cumulai:ive difference between annual and average rainfiall, Avon Park, F�.., 193'I-2005 .................................................................................65 Figure 5. Gumbel distribution, 1-, 2-, and 3-day �,von P�rk rainfall for 5-, 10-, 20-, 50-, �nci 100-yr recurrence interval ......................................................66 Figure 6. Cumbel distribution, 1-, 2-, and 3-d�y runo�F for 5-, 10-, 20-, 50-, and 100-yr recurrence interval, for Four Seasons Sub-basin OA .....................67 Figure 7. Gumbel distribution, 1-, 2-, and 3-day runofFfor 5-, 10-, 20-, 50-, and 100-yr rE:currence interval, for Four Seasons Sub-Basin H ........................68 Figure 8. Gumbel distribution, 1-, 2-, and 3-day runoff for 5-, 10-, 20-, 50-, a�nd 100-yr rE�currence interval, for Oak Park area Okeechobee Southwest ' Corridor........... ..................................................69 ............................. Figure 9. Gumbel distribution, 1-, 2-, and 3-day runoff for 5-, 10-, 20-, 50-, and 100-yr r��currence interval, for Okeechobee Southwest Corridor pasturearea ...................................................................................70 :iJ � N �� D� � � � � 0 � � �. . c� � �� . � 0 —fi O i � I N n O � � �' CD CD n O ' C � � � � �-+ - O ! Y'r � : ',� � - h w . (D - � .. � � � � � � - fD � (D ' � ti � � g -� i � ' � ' o € � s ^ a � ♦ ; D a � � � �,: � �,� � f _ _, j .�\ . , . ' ,•' , . �..'�: . , f, ?;: `^t CRAI.,..G A ShfI�H & ASSO�InTES . �, :.`'a„P -:k„`• �"J m..�3",:,.��,. Figure 2. Annual Rainfall, Avon Park, FL. �! 1. . :.;1 70 � a� � 60 � n � 50 � ._ oC 40 �a � 30 _ Q 20 10 C Year + 1930 63 1 7 13 19 25 31 37 43 49 55 61 67 73 Figure 3. Cumulative Rainfall, Avon Park, FL � 11' � ��� � 3500 � � � 3000 n � � = 2500 . � �, 2000 > ._ � 1500 � � � 1000 C� 500 � 1 8 15 22 29 36 43 50 57 64 71 Year + 1930 .- F ig u re 4. AVON PARK, FL,1931 - 2005, Cumulative Normalized Rainfall Diff=P-Avg � i � • � � O.� l�J 'O.� � � l�l�i Figure 5. 1-, 2-, and 3-day Rainfall Avon Park, Florida,1931-2005 12 10 ��3 � a� � � c - 6 � � � .� � � 2 � Plot Position for 5-,10-, 25-, 50-, & 100-yr Recurrence Interval —o-1-day —�..�-- 2-day �- 3-day .. 1 2 3 4 5 Fig��re 6. 1-, 2-, & 3-day Runoff, Four Seasons Sub-basin OA � 7 6 �' 5 � � � c ,�; 4 � 0 _ � 3 o� 2 1 0 Plot Position for 5-,10-, 25-, 50-, & 100-yr Recurrence Interval —♦-1-day I --0— 2-day -�— 3-day 67 1 2 3 4 5 Figure 7. 1-, 2-, � 3-day Runoff, Four Seasons Sub-basin H � 7 C� cn 5 a� s � c 0 4 c � � 3 2 1 0 --s-1-day —�— 2-day --�- 3day . :� � 2 3 4 5 Plot Position for 5-, 10-, 25-, 50-, & 100-yr Recurrence Interval F=igure 8. 1-, 2-, & 3-day Runoff Oak Park Residential Area, O�keechobee Southwest Corridor ; � � � 5 a� � � � � 4 0 _ � 3 � � 1 � Plo�tting Position for 5-, 10-, 25-, 50-, and 100-yr recurrence interval .� 1 2 3 4 5 Figure 9. 1-, 2-, & 3-day Runoff Okeechobee Southwest Corridor Pasfiure Area � 7 : �' 5 a� � � _ �; 4 � 0 _ � 3 � � 1 C�7 Plotting Position, 5-, 10-, 25-, 50-, & 100-yr recurrence interval --a--1-day --�— 2-day —�-- 3-day 70 1 2 3 4 5 Qaf�f�lEV��O� f�--�'�[��[�� "fable B-1. Four Seasons Summary ....................72 �if able B-2. Okeechobee Southwest Summary.......73 71 Table B-1. Avera e annaal storm flow, return llow, and stream flow, nitro en and hos horus losses, and eak 1-da dischar e, Four Seasons sub-basin summa . SUB-BASIN A B C CC D E F G H 1 J JJ K OA OB OC OD OE OF Acres 215 121 62 12 79 . 141 146 67 120 103 39 3.6 66 235 270 686 99 109 49 Storm flow, ac-ft 128.54 83.28 39.84 9.65 58.59 90.59 93.80 43.05 89.00 66.18 25.06 2.31 48.95 126.51 145.35 369.30 68.14 65.67 26.38 Return flow, ac-ft 56.44 30.65 16.02 2.88 79.49 36.42 37.72 17.31 29.60 26.61 10.08 0.93 16.31 63.25 72.68 184.65 25.08 28.67 13.19 Stream flow ac-ft 185.0 113.9 55.9 12.5 78.1 127.0 131.5 57.4 118.6 92.79 35.13 3.24 65.29 189.76 218.08 553.94 93.22 94.28 39.57 Nitro en Storm flow Ibs/ac 2.88 2.87 2.86 3.51 3.32 3.09 4.78 3.07 3.19 3.04 3.05 3.06 3.19 2.88 2.86 2.90 3.17 3.24 2.82 Ibs 618.3 344.9 177.2 42.1 262.3 435.7 697.3 205.7 368.4 313.1 119.0 11.0 210.5 676.8 772.2 1,989.4 315.8 353.2 138.2 Return flow Ibs/ac 0.74 1.47 0.33 0.15 0.36 0.94 0.45 0.68 0.14 0.76 0.26 0.26 0.14 1.88 1.88 1.88 . 1.18 1.27 1.73 Ibs 150.3 176.5 20.4 1.8 28.2 132.7 65.2 45.7 16.5 78.1 10.2 0.9 9.1 441.8 507.6 1,289.7 118.2 138.6 272.4 Stream flow Ibs/ac 3.62 4.34 3.19 3.66 3.68 4.03 5.23 3.75 3.33 3.80 3.31 3.32 3.33 4.76 4.74 4.78 4.36 4.51 4.55 Ibs 776.7 521.4 199.5 43.9 290.4 568.4 762.5 251.4 384.9 391.2 129.1 11.9 219.7 1,118.6 1,279.8 3,279.1 471.2 491.8 222.9 Phos- Phorus Storm flow Ibs/ac 1.03 1.73 0.35 0.14 0.76 1.52 1.05 1.51 0.08 1.34 0.77 0.77 0.08 2.36 2.54 2.56 1.33 2.07 2.35 Ibs 1,178.2 785.3 259.2 62.2 442.1 766.5 689.4 101.2 9.6 138.0 30.0 2.8 5.3 554.6 685.8 1,776.7 131.7 225.6 115.2 Return flow Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Ibs 0.86 0.48 0.25 0.05 0.32 0.56 0.58 0.27 0.48 0.41 0.16 0.01 0.26 1.20 1.35 3.43 0.40 0.44 0.20 Stream flow Ibs/ac 1.03 1.73 0.35 0.14 0.76 1.52 1.05 1.51 0.08 1.34 0.77 0.77 0.08 2.36 2.54 2.56 1.33 2.07 2.35 Ibs 222.3 208.1 22.0 1.7 60.4 214.9 153.9 101.4 10.1 138.4 30.2 2.8 318.9 555.8 687.2 1,780.2 132.1 226.1 115.4 Peak Rate 1-da , cfs 5- r 212 225 128 34 159 207 231 122 173 182 92 12 104 301 332 562 157 191 88 10- r 379 271 155 41 190 251 280 148 208 220 711 15 124 370 406 691 177 220 108 25- r 482 342 196 51 239 318 356 187 261 279 140 18 156 475 523 892 223 280 138 50- r 551 391 224 57 272 363 406 213 298 318 159 21 178 547 602 1,030 255 320 158 100- r 620 438 251 64 305 408 456 239 333 357 179 23 199 617 679 1,164 286 359 178 72 Table B-2. Average-annual simulated storm flow, return flow, and stream flow depths and volumes, plant nufrieni loads, and 1-day peak d6scharge rates, Okeechobee Southwest Corridor. Oak Park SW 7 Ave Canal SW 16 Ave Canal SW 26 Ave Canal SW 32" Ave Canal Total Canals Area, acres 83 1,349 1,217 1,058 1,152 4,776 Storm flow in/ac. 10.54 10.44 9.92 7.04 7.45 8.87 ac-ft 79.90 1,173.63 1,006.43 634.25 715.12 3,529.43 Return flow inlac 2.77 2.45 2.48 2.84 2.96 2.66 ac-ft 19.16 275.03 251.64 250.32 283.05 1,060.04 Stream flow in/ac 13.31 72.99 12.40 9.88 10.40 11.53 ac-ft 92.06 1,448.66 1,258.07 884.57 988.17 4,589.47 NITROGEN Storm flow Ibs/ac 3.52 3.51 3.35 2.49 2.51 2.80 Ibs 292.99 4,731.07 4,078.88 2,634.18 2,894.89 9,607.95 Return fiow Ibs/ac 2.11 1.42 0.59 1.05 0.28 0.63 Ibs 175.29 1,914.61 715.98 1,106.43 321.18 2,143.59 Stream flow Ibs/ac 5.63 4.93 3.94 3.54 2.79 3.43 Ibs 468.28 6,655.62 4,794.96 3,740.61 3,216.07 11,751.54 PHOSPHORUS Storm flow Ibs/ac 2.11 1.08 0.59 1.09 0.43 0.69 Ibs 175.13 1,452.19 712.44 1,148.74 498.19 2,368.37 Return flow Ibs/ac <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Ibs 0.33 1.86 1.60 1.59 1.58 6.62 Stream flow Ibs/ac 2.11 1.08 0.59 1.09 0.43 0.69 Ibs 175.46 1,454.04 723.04 1,150.33 499.77 2,373.14 1-day Peak Rate cfs 5-yr 179 932 790 683 714 -- 10-yr 213 1,120 950 841 871 - 25-yr 267 1,417 1,205 1,079 1,116 - 50-yr 303 1,617 1,377 1,241 1,285 -- 100-yr 338 1,811 1,544 1,399 1,446 -- 73 t9�'F*'f h [��iX �; �'af,:� iViap1. Topography of Four Seasons Area, Okeechobee Co., FL ........................... 75 Map 2. Soils map for Four Seasons Area, Okeechobee Co., FL .............................76 Map 3. Land use map for Four Seasons Area, Okeechobee Co., FL ..................... 77 Map 4. Cover map for Four Seasons Area, Okeechobee Co., FL .......................... 78 Map 5. Average annual storm wafer nitrogen loadings, Four Seasons Area............ 79 Map 6. Average annual storm water phosphorus loadings, Four Seasons Area....... 80 Map 7. Topography of Okeechobee Southwest Corridor, Okeechobee Co., FL........ 81 Map 8. Soils map for Okeechobee Southwest Corridor, Okeechobee Co., FL.......... 82 Map 9. Land use map for Okeechobee Southwest Corridor, Okeechobee Co., FL.... 83 Map 10. Cover map for Okeechobee Soufihwest Corridor, Okeechobee Co., FL........84 Map 11. Average annual storm water nifrogen loadings, Okeechobee Southwrest Corridor, Okeechobee Co., FL .............................................85 Map 12. Average annual storm water phosphorus loadings, Okeechobee Southwest Corridor, Okeechobee Co., FL .............................................86 74 Map 1'. Topography of Four Seasons Area, Okeechobee Co., FL 75 • u� � • � LJ Map 2. Soils map for Four Seasons Area, Okeechobee Co., FL � � • 76 • � � �, *S�IiL� LE�Ef�lt? BASII�GER AND PLACID SOILS; DEPRESSIONAL d ( BASI�GER FI�E SA�D �; FLORIDA�A; PLACIDAND OKEELANTASOILS; FREQUENTLY FLOODED C �;;_ FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIO�AL FT. DRU�� FI��E SA�D IMMOKALEE FINE SAND ;;,; MYAKKA FI�E SAND C ' OKEELAf�TA MUCK ` PARKWOOD FI�E SAND ST. JOH��S FINE SAND <� VALKARIA FINE SAND VNABASSO FI��E SAND �SUB-BASI�S �,.� SEE APPENDIX D, TABLE 1 FOR SOi� R'F�OPERTIES PER BASIN �s afe � ���p "USDASSURGODA7A ASMUSSEN ENGINEERING, LLC UPDATED A!'RIL 2007 SE 8TH ST 0 625 �,250 2,soo 3,�50 5,00eet OKEECHOBEE, FLORIDA �_: �,�.�-,� , �.��.�, I� � � r � � � Map 4. Cover map for Four Seasons Area, Okeechobee Co., FL �J i • �g � • . . . . . =r.. r ..� c i-..��..,_. - .g' -c�;'-. _z-r - ). � - •,y-�- t� � i- - t+-n'. - :r_, - � .., _. i _ � �'�,... �.,M _ --:o-�.. _ t �4a t � j:_ ;'a [ •"� - �: �y � I/... .:�_.: t' `-'.r - t .....vFa-� �-1> '"�-��'� �l 7 - .j:: 1��.- �_'H��_. �, . , � -_ , `�, Y��- .� �:5� , COVE�R MAP OF FOUR SEASONS AREA � '� �4� ;> � ;� _ �{�_ � �1, `' z���` � ` 5 `� � . �.a� � i 3 � " ��_, . . � / �� . �, B ,{� ' �° �,• ` t . � 3`� � �1 1 'C�. e,� '"�, ? . �t"_ - .� / �.'._ ` � ' 'f. I 'r..tw ��, ` 11 . � .t. Y F l f \. Si' 1 y� - �� r-. � : � �.�5� ��,,,,� ����.y��t MAP 4 OKEECHOBEE CO, FLORI DA ������ � �-;,; '? � �l�`�� �sh"�� � �� t, �;��' _-�,� -� � _ , } t . 1 ,t: � ,,. J � k 1 . - '�'1 r ,r f 'i� � .c r a �. r ..A I - 'Lt r �t Y � > � �+r-, e r - nr-Tz-;T. -- :r, .I-- ! pb'�,��::.,'" �,. `�_ ryt f,..'�: _.�7_, y:, "�'�.:-- n � . .k. .:. . �-' � . ' . . �. � . . . .� .._ . . . t� �U �� � .1, . . . .� - _ .. � . .: � �� .:. '` .- i _ . , 3,_�_ .. �,. „ . ., , . ...:;..�- --,,. , . --„ ,-. - , - -,» - � t ::,•<>� ti' - �'� t - ,�. ,.- ,. �, :, . ..... �..., . �_.-:�-� . � ..,� �.,_y t: .f�'�i. �.1 � �.r1;i e, p R: � �. ., i$ ...:. _.;;.... � .,. .,: _ , .v... ; ,.v�- .�.. ....., _ + i i- �' a - . . . -�.. , ""._'. , __......�--._ -..... . , .... ._� .. ��.:....._�.:. ,._,.._ ...�.."�'.';_- �'' :'ii -i'. 3- - p . _ }. J�. _ �.�i ..,. . . '.:. . r...._�. ... .: ..'.._:. -.��,., ...__.�-.. ..: :.. .. ,.._. 1� ! �!c 'l '1 .]�Y4` l✓ . 1 �.�. _ ..q �.�'�,. ) y. �� 1� i!~ f ,.� "+ . 7� i - � i.-..{ ♦t, y,." .. =.^. le:'. .n:.. _' 7�., h � - . .��c'��'~ i � � I �. �,;.. .� - i. Yy � j_ � _ .. . . � - ... . � , -, . ,. , . �.. . . .. .-�'. :. ...:.. " �; :.' . i . . . �. �. ... � -' � r:. : `,: ,":. .:- � . J�-.-� C .�. V. - 1 � - �� :,.� _ s �, �p` ': ,.a�.. - � -�- � -.�-. ...;.,. _,, ,;. � ,�.....- -�- � -.1 ---�_-. - - - �:�.a ..s� t.. �'. - - 5" - .-#c'r ,v . r `lc �c #:.. . _ �. . r _ _ �.' -+. � �. - �k,.. ar' - - � . -:i. - -'... .� -........ -....�: -� - - � a - - .0 `!'.... � rt a � � . _�_w. , x.. * - - �!�� " - .-��. - ^� t . r�' , i - •.�.. �.:4��� ' �� - '�'�.. L �'.�� - .:� 1� :' } . . t'{ I Y 4 1 .��!i -4P . i.T`_. �1, �' ! - -.A.�"et.--- _ �'� _ ,: .� .: � ,. . ., ... 't � - .J� N\��.` 2`�.��� " . ' � �� � - r �, t, 1_ ?r . -� F . r=.'-. :.� - ' ��- � � � .:. .. � . ,. ' '.. . , .,- _ .."�� ..�. .. :�.. `__. ., �.. `�c _�: :.. .�:�� ':.`� .� _.�. ._�- . _ .- "h�'d ` r ,: . .... ��. �-.... .:.. ... „ . . ...... ,.:... �.._.. ._,. ._�: -. k. ._ � :�.�r. : . � -� � 4.... s:: -� . ;.. �.� :.5.� . ..r� . „ ..;,.._ ...... .:.. ..._ :�,..�..- w. ...�. �.r..,, - ..... ..:�. _ . _._.. r��. . . . .. �. ... .. . .�. -... ...._ ..... . .�. .. ...a1 .r ).. 1... a -.T,� .:P �Y'r. i i 1 �.. . . _, . . :_ _ E... : :. _. _ ,_ _ . . �,. ?;c� a �� c �r"�� _ _. . .,... _ �� _ � : . ; .: _ .. : �;. ,._. _:..._ T� _ ��''� - �. ._,._. _ . __ , . _ . .: . .._-,� ,. _.,. _.. : _ .., ��_ - i s �. ,- - - , . , .. . . � . ,: ._.:... _ ._._. . ,. -� _ .. '.�.� -�� _ .� �` -...... . ,; . „_. h... .' . . .�'. . �: , ... ... .. .: -� -.� . ,�. �i.�k _ - - r - f. �j � ;1� ` ' �` .'y: � �;� � ;� .,:.., . ._._ .. . _. _ _ ,,,.- ; .� -. , ,__.r ,.. <, ,- . .._ . _.. - - ' . _. . . _. _., _..-_.� _ � ;. .::r , ' •.� 3� � E. .1 .. i.- �1 .Gs 3T' -�i � 1. -. aC� : 'Se`:. -s �. e ��.� _ . .. . .. .. _ _ . �•- t_ 5_ r. t �, 1. .:_.. ..... .. ,.. _.. . , .�. -� ,z :r s ti . . � .-. , .. s- - _ _.. •. i . ,. ,: ..:. .. >: _ _ �::: . :; .. z. , .,. .. ,_ - r .'i � �. t _ .:r. -_..:�,-� :. .. . ,._- _ -�v:..,..,. _,.�,.,�- , . ._ .� . . .a,.�._ . ., .,� �, ::� ..s t-� �r 'Y% _ _. . a _..,. ., _ _ _ . .. .:.:; . _.. : . . �. � �, , . . _ .. .. - _ `�s . ;z ;.�� .� tia -� ''�. �� >' ..Y .2 �!�� - � ♦ .'�:.: .aY . . ., .: } .ti... : . � "._ " - ....:� . � � � _ .t ,t.� : r.: --�.�J _ a . . . . . . -. .. . .. � -., . i ,k � �: - { -} •.z . _ •_ , . : ,� f... _... ; . .�r _._ ._. _ . _, • '. �,. � -�;« :F.� � � - - �::'i� . �a_ . :��;'� , * •-:,j . I . s r _ . � . . . .� .,� ..-`� ,. ..� .�. �.-:- . ., r r.! r..� 4 . . �i 1 . � . . � .;.... . . I "" :-_�.._ .�. .. .. �r*' ..n,-.e....�... ... . . �:�2.':. ..�-.,� " �f ':.� _ .... : •;�F- . .. ..�� :,.. ..,- .�.. -.: .... _.., �'�- k'. :�. 'p_ti_ . � ._.,._-.._ .� ... - , ... _ ,._ : .•�� ... ... -.::.� _. ...•..; .-. . -:.-. . .. � �-z, - . . .. _� . ..,. .:�.:. .,,:,� ,�... ,_..�.,�:.. .. ... -_ -,.., -.�;.� _ . . .. _ : . �i.-�.i ..:..:. _ __,...�- ..,., ..�.. _.. �... _... �., .,�. , :.. .- :��jf ,tr., •��. s# - � _ �- -- . . � . ._. . ._.., ..:.., - __. -. ... . ....,.•. '•�4.� :� � ,�� � f i '� }� > ,. - --� �:.. ::.,....� .. �-., l�..._.. . . .c�.,. _._._:. ,:�-.•. --�''�- - �t .� � . . _ .-- ..,. :- :�.� . _... ..,� -.�... ,.�.:�...:-, .. ..:... . �,: �.. ... . : '� '�i:� .i 'I.'.(� .. ,l _. r � „ . . - _:-. .. . . :... , . :..� ...:. '^._.'... ..: .... ':�' y ♦-.7� i. -�. � �-. ..:,"'.- ......� i� r. . _�:.'. �_. .... ..>. ., . c.._ . _ :.'� .:/- .�i �. .'.,t '..1• . - � i .. ' ���'"" } r�_ L. :.-k �r �. T . , ». S.� �t :,',AZ,'i� - - ,e,� �',f � 3� .f - �4�.' r• � - �. r:; r.. L - F- � /,� .� �. - r i ?�+� ,k _ l• �:� ' �' �s � _ _ . i.�r''r.� . 'i r•, �.> y �� +` q .ry., ' _ � _ �-'r- . ',i � - . . i - - t -9 �f a. 1� � �r:.. --�'''. ."-.,�.���.. �Y.' - f 3'i'. .4. .1: - f ,.-;. 'F' 1, r?7. .fi {` _ .P � r - . y� �'� -.r•' .� �_ �,-•- - -' eq - '2-:� y _ �. TC, _ �a •�_ . _ ?x : � e. •���.��� `{ � �. � .'�b' �' - . .s,�t!'. _ s_: � �, ', 'i �^ .l - '�•� ? � : �n'�. i .^u.-^ • _�.' "4 i A-_'. ,�� - 1�'2� - �! _ "� l " � t ' ' �+c. -=r � .�. _.��� - ,,: ' � _ ,�'. ,�/ �- �`Y ,�, , ` '� - t � _ ..- : . .. ., ,.. �'.: . .. � .. :.r..t: i � ��: ,�' s '': �l;� . E ':y� �...� i . �.✓`. � l � ,U - ; T.. �' i� _ _ - y iY-�' _ "� � •�� F' . jr�� �' � _ � �. ?!a - �� i : � '!r, •'�' TS♦ ' � �.i�`' � .� VT".�: t5 .�F�`� a.:i 7 - JY . `-.. /.. _�,..Y � i - ., _ ; �'� 1 - 1 •� _ �i .y _+rti�. �t�. F Ti ♦ I _ 2 �SY ��:�� � �. � - s �F' �t k' r ' �' .....s ..h��-. .�.`_�_,. - - t. =�` - �x" � � �q .� �.. :�k� .`�'c,�� �... 1�- � . . y� _ �. � - � �"i� ',� .-� .'� -t ("' ` . . Ts ' i e } _ - �.i� - ; F :°a°i: r:. - w �� �� I •�_Ti�� - e�1 �. �� i � , _ � � ] " .. y ' • . . . � ��. v..at - - - - ��? �• �1 '. . ; N - .. . : • r. ;...y., < < R ': �R .. ..�. �'�' .�-�. .�i �� ,_ : ,. . .. , :. _ .. �. r �,.�r, , _ � . ,, -. . . . �, .. .. .. . . ,._ , :_ _ - . r ..._ . <s_, , ., � �. ,� ,. .: t-_. ._- � ,.. :. ,, , , r� .�.�J � - � - . _. _ Y>, _ ,#._ .. _ _.. .. . . ...,� -., i-. ♦_ . ,._. .. i. « . � . . -J� . . ���� �F I -i-� �� , . _ ._.. ,f �� � ..., < � - " . r " ..� .:.. - - l< .�. , �`' 1��. _ �, ..;�. .'�. � � .* . .�_� .-. .�r::. '.: .. �- : ;�e-.., ��_.:. _.�. . +�'i � - --.�. -., _ ��b,, 1 ..._,.. ,:; ,,, �-.. ..-.... ..:-� -- . . �` ��� .. ':�e - :.�- . �4 - . _ . ,� �- . Y.:. _}. , _ ,�•: .. .:.�., _ '- .. . , .. _ �^L l - ,. . .. .. ... .1-..-- , _ X�t,q 1 ;�_.1 _ ..... .;.�^ -�:-<�'�. ._ . . -.. .- ' . -.:. � -�. ; .:..:.s�-. - - �"! i 'C « �..j .._.- � .. ..1. .. �c_:. . . �.. . �....� ... . : . .' . , rp� 1 �� . . . � � - ._�__.�..:t�� - ..1.,� ..TA . ::�,. _�..., .. ,� .. ...s. . .. ..., • :: i .a•-,..Y � :.� rl�!'�.'�' �.� .. i 4.: . - � � � �� � . � .+�.a1� . _ - -A Y :.--..� .. � _ � ,.,.. .. � . �. �... . � . . . - �' : ' . .. - y . . . -. .� . .. . .... , ; ,. i :.:.. : . -a ..., t. ..;, . ._.. ,._ {. _�__. ��-. '•� � ; Yi .... .. � : ,.:., . :.,. 3_ ..,:a : it. . ..� - is ''-- \^ n . �i`` / IE ,.:_� -.. ..., . ._. ,. :$ � t. -:. ..Ya.� .-.- ..... ..... .. .�i _ 3 ?-r �� ��� r. { -�-- � ,:# � :�.. - � �f - �: "'�?;:5� _� 'r >�a , "n r L: a: �..�� �'C . .>.:.at. � _♦. _ > i• ,,,�, ��.. .'4 ::� R _ - � Y. f .i r�v( , � n'i y _ g:. � S •,�' 'h - o, - �. ;e =:ai. s' ti . ,� _ , • _ -� , � ,. ;, � _ , . , •` a� � _-:. "'>� . .:: - � ... . -. .�, - . . .�:��. ��_�, : �� � . .�_. .c.'�,i: . .. . . , ' _ .. �u s �;.`;.r-. - � t -. s t .• . : . .:�I . Y _,. i. 1 - �. -t. - `Y�✓' .. ''S �� 1.' ..�' .�Y . '� . �.��.a- 4: � .ti.r., " ., . � .:`.r. . .: ,::� : �'',_ .,'_ ..; , . ..::�-�. --' _ - 4 -:o;.. ,7 \�c' r�:�er . ..J . .1 �. -, r�. . .!'.,v. y � SS'. C � _ - _..v e . :i �... � . ... 'a "Sr_ ., y, .. .�_- . . � . w�,�_ �_ . '�. : y: : _ . � � -l�.'. .: !, y,. � ... 4 .. -.-. .5;�':. . :.. . � � -.. � . .,� -..��.�j ._ . nf . ; . .> -.�... .., .. .. �.� . � ;-�-.. .-: . .�: .'.y �. •,, "i'i � .�t y - - � �: - `� _. . -.i. l- _ , .._ ,l,. ¢_ e.�,.. -, f! ,__,. . �.. : .. . ... y .: �. ..,......r... �r�S ��'�.: - r V� � .! � ' �y `,- " _ i '..-t .,� .� :�. .�-..�..r - . I". .!- , . .- ..�. ,...._...�y . _ ;-".:... .� , .�........,�. ... G 1 �Z. .,f. .,� -.. �_. � 1 �'I � ^ , "' �.. .. .' . ..�. �. ..._ . .,.;, 5' ,� ..: ... ._2 .•� .��'� �. �'�v i. ' - ;il{. ` ��f. .� .. �-. . � .: _ ..m t.. ... .. , .. .f . ^Y.,..� .... i� . .:-... .. :� . i"�;�.a.., .� _ fi :�� � \..;t� :�'. . ..k��.. g .¢... _ .�,, r_t �'._ �- y� � - .,� ,i.: .. . . �.. ., . . . , :. „ � � � - , 'y� � _: . F: _, _� _ � . : v , � .4 _ .� . �..:. � �, �:� / �\ .-� r \ y� .: . . .� . �..s. ,�..: �,. ,.... , . : _ _. _. . .. , ,.,: _, �g ;•; z � � I � - +r .-� rw . � - � « ..- t . . . � �,.� �?. . _ _ ._ *.. t ��s� . -�L ° �����(� � � .i .f.!' !� 1 '�� � 1 : _- •�' . - .,,.E� ... : . ,- � 1 .. �--- -::. ,>�,•, -.. -..- .� _ . 5.. _5..� �3', l 1 - ... ..j.. .�.�..�:'��.K��r.. s ..� 'c ..., .. ..;.�.,��-.-� �:�.�.;-.� . �.:R..:-..,.�. , ., .�.� :S - �:�y _ ..:.- .-. . : �.,r ,•. . �-.'�i : -v.�. � ..ts. s��:.'a. .._��. ,.. �.. ...... .4� t. - -S:`a� 1 :j���: --,.i_ � ,.}. fl ,. .-..e r. �:_ .c .. ,._ -... _ . -: � ,.... :, ri .. 7 . � � -..,�y _ � �i.. A ..t. .•. . - . _' . �rir" .::� -- . I'_ �- .. T: . ,..`;, .-i"i�.�r.�... �y,r.�. ___"°� .:.�.:.•• ,. �G .�y. � . : 1' � �' , { � __ �, r _ � �� ��' t�.z�=y; '�` {_ -,; 1 k.. r,. f ^' �: , • --+-...-.... `� - - �: .y: r -x -- _ - '�'- �: y: - - �' i, . f., �i. .�.3 . ' .i'.i' ! - } `�... . - �w �� .. : �. i� v� t !� � � : '� : ':. ' -.. . . . ' ..� " . . '_'� • :. . ' . - ,� � C' :� .'s�. �,�_ i. . ll r ....: , y� .� . . . � � :F .�.�-.a.. '; ._r ..:_.. . �.� �: � •.^' .�:.1 1` ` : �� . ��., i�.._{�-:t: Yrr .r .iC t _ s:_ . �e� ;1:..�. _ �, _ � �^�'_. .r..:.�y:���...�.� - . _ .� �...� ... .:: �- '� '"•' .�. .�� (-s. .�,. �.�. ,a _. 7� - -- �=.a�._ a .cy . . 1: � -_ - ��. - �+y_ _ �'s =c: x' - - �]� . .:'�'�� n,� - �� �u�.,r, . ��.�. �r� ��-_ .�a_. . ..,.$.�F..�'_ "�•.. -�.� ,�. .,.�� ��'��;i, .-�:�_ � . c t �.i- � ;7'��' � _�. � �1-'-!h«-.sJ ��¢ .r. _ . � '� _( �i 'r .t- :> �-$�. �Ta�'�`- '�.F� �"" � w.� � ' ,.� - 7. . .>�,i. k�, . s` � 1 - - - .. � �'_� � �� iM6' iY � 1 1 :�:i� .Y - M1 .7� s 's -. �F �`'i '6 '7��. i - ,'� 'l.' J_ •4=; �.�r - �.�': � _ . , Y '., _i , . '• . : .. ' .>....' ,,.... �-.' ' 1 ��- '. . -. _;_�'•` -��`' �4C: . r- . . °��.',h.�. �. _ �- _ Y _ .t�._` v�� eA)' ' _ �. ' -_ �.�( '.�.',•Y yx' . - ��.Y� ..�:: ��.� _. '.. ..:`._`..: +.. .�J' ,.�s ' y .. . - :I _ ' } . � \ 7 . � �-. �, � :,. ._� -� � � � � .�:� ` �':: ;-„ .�. .,� -, . -:-�Q- , � - 1 - � - ,� _ _ , _ : x t�' - 4'� . .-K. - ' �.� � - ',r_ -.fi., e � �. +�. i� +:�'=+ - � 1 'i.: � � - 4-'��'=- 1 m i�: �"'t - �7. •� 1 - �1� �,fi. . 3 - -- . . ".ti.5� � - 1. �' - - • j: - . �r - .�t t �. e • a� � t,... -" . n . f ' -- - € :�c•� " r �. - t _ , �-s- : t. , f� t , �. � � ��•-- • . : . _ . •� - ,:... . ._, . ._. '. , ��,. ' ..� _ ..:,;. + . . - , ., ., � � ` � - �%� . 'r :, ( ; , _ y�i :.�. . _ _ . . - -a ,� si=r' i�. i� fi i, :t a ar•' : t ,, / P . Lr' + . ' � : '�K ��'. �'� . . 1 •1 - �l-9 � � . - �•.. � 1 - '�- 4. ::3� ' ( ,'�!! . - �+.. -.y.., t�i-� '�� . - �.`. 'r- .! � r t • i�r�r �-��� - /7 .`� �/ -.' ir .J i '� � . . - �'4t.F� . p.,� ../' • .� fli��: - .�. . � l f �..:�� .�:e� `�� � f� 1 i.� ��, .�� � � ��• .y{.: l. �':� :J � � ,�' . * a - ,.:._ a - �� 1 - ,] l- _ � , a � C �, >`- _ .� _ 6 1. f . a �.�;_ ' � .:�.,. . � �. _ , t �8 . �.' 1. '-� ,I�i� `.3.c. f r :� i .n� � /•�' t•• -Je'. �4� - - J � t �c:t:; f . � Sr: ,+ ��-�. - I:. � . - .r+.. � ��:�' i: . -y : . � i�i $� '� .:�iVk�i�,i. . e� - - j � � � -+��� q -:�-- � - --.s ':�" q..�`-: �,s._Y. .�a. . .[ ;�l '��� 9 . S . 1 �.. -r., ; . �Y � �i , � •� �'- . A :.-o : q, y � � -.��. - � � �:��..� �� � i _ �;�, �.r . _> . �t." � � .r. - I r � .._.,, �. -:f �,�' � i'1. _ '�7 t' •�..iL } I; '`'i A'. :i: 1- �a.. ..� _. 95� .L. t .:• .f�1 n - �i.�• :�fs� - Y: -�. _ _ ;d .a' �a--' i, .1« :�.L 4v�'1'�e�Y_:.-r'�C^_K� L��-_'J:,.-..��. �t ��' �� � 0� _ # {; '� � , . i � ,'{ _ ., .. i� ..� - y ,-.- , ,.�. .•. ,� - , -J - � s .-:":•;I �,�.. � - .. n r., . �s - .� � : !.. �4;� �, �' ,.,T-.. ^,• - �w�-�� t. - _ �...,Y,. ���k � 1 ' ' . �h� +t. 1`::i. �T .-{ [� � � � --��i ::� . �` � _ �_ � ��r. _ �. �,; _ ,. :.':"�..�._ � . � 3 a . ar .`i - � � � �. � �r ; `�: L - f a ��� • � ; x. -. � . . F� • 1 ! ,x.. d. • .. 7 :J •y. � •_i � � � �.. _ � �� . rG. ���' ' - � . .�k- ��' � . I - .�:f+t' ...�,"i.l.`: - - ��,�'R.� •�� - i � a+`'. � �fw�. - - .t._ .,1,� �p `•.p... .. - y.,a� �y � a- . .�' --..,+..e �;. � ' . .. .[ It � -:.!.� .�� ,'k. �'t,.�. ":s"'r.•.. (��� ''t _. i � 1 , �F•'�"'� -- ' l � c . x � �'� - � - - 9p��� _•'a , ! . .. ;s. . I= �'i: ,� . �"r : �� . [� PI.�.. . ab i �.�{ �'1. :�I� (��p tl.:k - .I . .V _ t'�� sY:. ` ���.- .) '.�- _ ,y,. k'�. 1 s e•� :�. ' a� . ,5:: r � �' ,:1 . `l :i .r - - _ _ a -` �S �� v At".:h� ^ti'�1 '�'�� `'i -J>�� ' ( 'cl¢'. 'i4 - 7? . -_}r I ,.+.�`C': � � ����„ I q. .,{-�-�' , ., _ - �a ,. _ ; . . . . , � :. . 'r �" �...� ..�V7 • �A .. ��. ..�.� •I. ' -i•1 �• �-�f . , .1 �, � • ��, �' � � �.� . .. .. . . •� • y�r.c . - - .- � . �, y .: . � . � 4 ' G�. '+.�F,.. F _ �� �{z'� �. I y. .�; '.�' �,h.,, :.�nF�. ie-_ "i �-�'71�. o ''��� �}�;� � � f�. --t _ a.� :f - '.L .,.'�� �.'� .,'S.� - - �.�c. ��- �i �..o.' -s� _r,`'Yl � ,F� �' � _ a -.r� ' 1 f • = �a tN..,.' �L't • - . .�- _ :R . #..7i� :`--�a--�- � } '.,f3M �.. ��=t� .;� f •�i3.< :r, . �.•.� - � �!`�.�' �'"f'.. �'u4'�.� .1• •S'- f t- � F: �3 ' 2�i�C`. } n _ - . :� . i _ ��,^ `f � �'��- - y •� ���• '�� a ' . _ ' ' . �f . %�'�f - l 7_ 1 C'.1 .1J� .1 7 :� ,•`. e 1, ; "'i o �:+a �- . . t � _ � . , . - t' fs � ;C- '�-!'-'_.- `: . e' � 2 . � � � - �1-. - � :}� �" � ; � � � .� _-::e-. i �. � ., . - �j- i s �y % -.il• i`•9+ -_r3. �� �: ,�+� � -`�`�i ���„'-t..- - - \� - i � - ��..� � . �1.. .�� _ .kMi' � �.9� v. :�:: _ i y.�, i . ti4: ' • . . . . , , � �. . . -. . n -„ , u, . . � ',� F� r�_r-.�.=�'�-. - - - -�, ' � � - _ �''%- � � r M -,�'- - e' - i ,: s, t ' c�/� + � 1 � f � � 5 , ��'-: - ;• K ..'ar R; . s _ ,� ;�• , :i . '=� w.�, � �"�t .�. d : 1 i, _ .a- ` - yI ,�,€ � . `�: �� �,{�:."" * ,{ ,.� ��,�,, � ub-- . . - �I f . - �`.'k � , � a i �i� - .]11�• ./.y� .�i ` e�qlCr �.1 � r _` � .. i -� r . . fP � "� ` � ,eA�,r '�� �1 •7. �.�t'i�' � :.i.- ' .'i•. _ ".1.w" � k - . ,�'� „ - . 'a'y'Mr �,�.�.. �:.:,S..r� • �T " �i""'� a ti - �r .. ..� � . '• � .-� .. � . . . . � r+ � . _ , . � l�'� � - [ � - T�;.'�i"o�--'�i�'ti... r � ��, - - - l . ,. . kF . . . , . ,. . _ . . _ - � - ._" , ... . , .. ,._ ' _ a _ .. , .. s� ` . �:.r� . . } -j.'� - -- � � �s : . ' , '<• t � .. ..� �: -_ --- ...,� .�3.. .. 4 � r �4 ,r �-�r' ? _"�. ' i r� � j„ .. . '�' ,� l �'.� . :�'4 ,7 I : - ^�.. , f ^ w a Y�, .�i� � ) r.{ 4 �y� � i � � : !PY� � . t Ei � �- ;,,., • � �. , : � , � e� � «.. � T � �.._, _�.Y. � ,� t' �` :' :; � y„ .p y `•.�'t, � -., - �,�3• 7v�'�"��Y�'' 1 _ . � � yt,� . ', o. 2t��'-l..y 'v , .a.� a [� � - •:••"'�' :ix�.: rti �� � �_}� . - :,.. i. . . ,',.-- .' - . . � . .. � �-�. ���. � � � �.s.. 3 ..y.. __.�r� :1 -1 'i•� �i� � 1�` _ �1•-'� `�� . ,: :. .. .. �.. . : . �},�S . . . . J. • _ � � Nr � �-; � �;': _ . .. , - • , ' • _ � .•'Y-=-. -�,��� � n Y. � �� } .9 r �; ��t+, , oji='i�i��'`.,. �� r.. •`tit 7 � �' '� -_ -. ; .. . , ..� �. : .. . -. .,. s . . r.: , . ., ..; .'�i . s. • �� :l.� -- r . -;fA -- - - � ''��.f r - - '7`¢� '� 1 .. _ .. ,;, .': � ,.� S . .,�.•.•-„-i!`- �.i "�-����:r -.�^�- ,�¢ S� i �w� i� :�.a. r� l . �.� .;t�. - � i�. `�. ;=: x, �_ - r .�.t-v: �R.- � x. ;�� •i Y ^� ,i,{ .� "�: 1 ;i �. : y'.1 _ '. ��+ � :y",� d . wt-Rt� ,:.s��S.<sc..Y . .w� '� ..1 r, �.� S'.� � I "?''-r,�.--, �-�' [ � .,n�4�i�'��. '. "� ' i., . - ' � `3K , �.� � � y, � s � J � �yg:,�.'.r �' r`µ. : i [. . a. i �. r _ ,-?�7 � . p .._ �> i .,j `sT� . {,y� i � i� Cr �''� - :Ki'� i�� _'Fti_ i . i'd•�Z i� -+' .T� f i _/M � �� - ��. A� 51 c��'� e�, -s'� "�1]� � _ ' 1" � ,��.- Y. ar:" .,i y�r ���%_ c. .:y�'�,,. h, f r. ,-.�1 s`�f�ti %� �;z�.r �,. �s.a,w.l--- `<�'�i.�rr� _-��':�.�, _� .�� �.:'lb!'1. > � - - ,. �1., L -' �a ��:ti, ♦� ��Y�_i� 1 - .Ir . .�r " ',�1�. 11Y♦ -•T :'1�' y !7 ��r j-' t��w�' � _y:I S` egend ...� •�.,:�; _ .,: �_� -I; I�; � ,� �j��.,., .� , ,:,�;�;:. ,�) � $.� �:� � 1 � _�• ��'q- '�hhi ~TT�'T�' -!_lr S� •Y ��,�{ i^ �� ���"��•�•�+ '�O`� _� }t. { '� �,' - y�` 'i � °~ � ��J��� �? f ��2'� T_L's;t�-`''�a.•�- ,` .,�;.4`.,��'. �S .ia'{f,� �!�st�,�x: .�,- �':�- ::3.� � � _���y� ,�� _ j� - - 1R - - x.�•�'t,�*, `�hj 'MO �1. •.s? �j(i;�[7 ;� ,� .�� �� ���, �t,5r: � ♦ __ i::����'r��`�. � c. �.��:- ' �. , , Y �. �P � q �". �� I •� ��w..- !. i : 3 . �' •.y � � q-r �--� r�•-i'• Y��;."-"_ � � : � t � - - - ROADS - =� � �:-��;- r,! R T y■n J L� �• N�'�Y�R� �' i'�w�[ ���J`�Y S .i" � � .i '"1 i+Y r {+ � f --T :,� 1: ..�y,._aY��� � r�.� , Y �� .i a'11 . rY-�y�'�� "- �:TT} 'L'j{� "`'yi'Tr ��'. � �fY . {�ijl� �� �'� ` _ ( . � �� � ��{ 1. { �js��. _ ���.:�iii_►/*JTe,'�Ff1��,�Yl�'f���/.i�'iY���}�.' S! �-�.r+ �6�. ' )h ��]r �'�.� � �M'1t t� �' C�`. r�,r,.� . �7S � . f i�„S,i ���• - -e-(� - �-.` '�l . � - ` :� . .%hi� b"T- "� �� rR: ?�L =_ �9�f6.x"'��!• ��;�:i•.�. .� �w.. ��•4" ��l f -'� !'Y.��, 6 ��-,�: r„i,: , :: . �i -" •.� . � , � - • - ' .. j�� \ y�� � � �' „ . ' a: r �` ,f ., 1 . " "; . s � P. a C ��_ I f. .�"j _ ' A�_' SUB BASINS ��, � �3�. ,� :� �-�`� �e S ����--�i.2�`��N RIR����flq�2lS�rO�_ _.t k F 4�Z� ��T��ldi/► o�l {t' -i _ �-.'i ..� s,�r+ • i � . -�I•T�� �:�.{S�' '♦ { � s4r� K �''�,� t�:.��:-,��•y '.�"_ -+.`��: _ - y �_� • d,�� '� ���yA '�' � '+` a �.. ,�r.`sI '�'t��. '/�am � _,:'�l S_�.s,� � �1 7 � ..�r� ;'j _ d� - - :a / "1� ••�i -o � 6�.�. tb. -.a ��' �.� �c�' v�1 --_ '`f : � - ���': �,a ,�, � :.i.+# �- i , �'� � � � .• a' f .� - f t" `�" rt '� = � - I 9 � i i• _ ";+= •.�r' �$` �:,.., / � r. ��_ � �.., 4� �'��'. ' � � - l `� / , �`= 'r: -r '�4�wF. d�5� ,�'. F t 1_.1. �i .! y'�i �.�. .1 - � 1 ��-.� ,+. s.�' - - F�:�.�.r'. �� � '�� � 4?'.�. .� �.i� u '7 l� � / 'i,` - .�.� �K. ��, r s k L� .w` �.+ ?� �.. �' i i• �z ,.�"�Sr: a :� ` - .� : � � I ' f � �/,i 'i,. - '4 .. .� � � � }� : { � a �,.t `i - � = f� �� Oc i . t � ��.�. , � ' � t . . ... . . , <. • I 't' +1 , a:.,. ��'! ..{ ' �" ,�J . . , . , . �. : -., �� �{� � i ,,� � . � : . c � . _ ' ��j,� . ' . r ' , � .. � ,�, v� � � � F . .a• � a '�'��i' .�+Y - ..C'. w. . ' - :i � ��:'n�. _3!!'�±'• .i� _ ' � R-. 'T7'.S :b �t,f' - r ��t:J.+J_-`D. `� 1 �";, �'g .�i 1 .r: -'`,.It,,��. ��D/ �' - ' 6�, ,a� �i"'iY.�',�• :1�i4 �S,' 1 .'t � r.. --��'_ � � t i � �i�y . �- , � '�-.' ' W r,_. , , ;' - ,; .<� _� ; s,.. ���i��' E ' i.: � .+�t. _ �z � =?', � _�.. _ a��: '-�' � .' �r ::.� i"�'- �� �.a,' � - �;�. )>. �,s r.Fz�, �r- __ � \. �r�"-:ns � 3 '-�.� �.- - ,y C� ~� ':�, �1�'. � i � :i: �,� _ _ -. --. : ?`-X� „$- i� f ,., � . � � �j+ l�, R a �� .� f �, � F - r `�-; Y x�^ .... � �: ,�s� i . L r,7 - : � ��-+.. �'t�l"�..�'•' -� iS ' _ •..�i'. �. t. y Q,° _ t �,y. ' _�j _ �\�-`C-. �'V+> ��A.� .i�-.i,�.��1�-! -�R"��-..�� �: - n3 I...:.I�� - ' � . r . ::.. ': .-,: {�f -� y' � - ,¢�:.�, ��.. . . � . :.Lr . .. r' �n� . . _ !�l.+�� - - - _ � {. : r .,t < � � ' : � . . ; . . - . " _ - � '- . � y� -� �.�. . �s�e '�- x� L 1: , --�-_ _ ���'�--:- � .. ,:=:��, .�..�� � ,��,r„�,w� tr� - - i =r .;:.i.. ��� . ��� <;��� '` --1.�< - , : •. -: � -.�� •: :: --.: -_. .. � '- _ -_ .}'? T� ,'a �y^i'�t�'r!a �' _ � ��. ' . �f. � f �+. .".a 'F.�.._ ���. ��jjs .4i j . 11 -.� f _,,. � %r �...� . ¢ - . S 0 s.'st J { - �r� �� : r' � � _ ' Y'�/ / K'` - ,�t- H� ..� _ -'�v- .!.' :�.•�. 'i' r..`.� �.' � -1�. �f:=��� ..G'...�� � :1• {rYZI' " _ ,!'� .��.�i' slii• �:l� - l.0 ' �7+. �� 1... - ��Es,, - l'� " - 5 ' � � '��C i � ��.:,'�T�.. .5� 5'� . ���� �- �, - �a" - -♦�.f�. ;�i �g `CO.s�j. r �yr^� � � 1 �.\` :,,�� ��;t .�+�. ..� - �` ...- �l� L ';2 �i�.� ,ti ' � t � .r_ j . �. \ . _ _ �:: - Vi f -,.i�_:3' � - .� . 5 - ;'�} - n�tS s_ � i i i4 �- ���. _.'3. >� �_.{-. . f 1 N�` y� r_'�-, t��f�� f W' ��_ �d +� \ �1 . ,�.�T .Y r_ 4'^.'w. �+�'t� C �. � i k � ?r 5 � . : ,. .. _ " . • _ . . .. �.:. ., . ��,� �j� � ti1 �'� '-� �i'. �3 1 '� � fe �. .. ... -� ' . � �Y.?l� .� - ;`'.. s.. ��'li J1`��. ' _ ��+f ' _ ' `:.� � . 1`-.: ,�k � �' �a� � `��.. � ' •;l, r ,, z � _ � ��: � _ - ��' �`" �.'�jr... IY . • � . �l - _ �'�-1 ;1�' '� . . . ...'. ..:`. ���.. h� . . � •_. , ; , -.�� �_ s� : ... -., - � > ,� , s�. � . � ' „ _ .ti. .s4 � -r:•. ,«„y,il' .h. �� x. ';�4. �:, ,r--�,R+, a` �.Y'x.� �..y. �. ` . � f . ., . �ji , ,_- . , ; .: , :. _ � = s ''� g� Yi � ., � : � . ;r - x .� �'. - � ': . .:, •. C -' ri-M1. i - Ve -�� • t�'� � � uY-'�. i � / �_ .L _ t... _ >.::' �,;.'.b' � ��•, � ,.:.W - ;�+I,• -r � '� ,.. •,'[ s. , . a -'., y b: r% .i: � ��c_ �'� � t.:,;:_ �� . .i� T. •::.-. -.�, . ;'� � yc� p� - !"- �� r�s T;.% j '.�� -.��'` _ . - ,?a_ 17 ,�d . � �' Ldu•.� , �.; , t � i .i, �� -W�.!_:? �> i. x � :�`t:-� . - �: i. "a„ � 4 _ �i, i, i,. -�i t� �! a 'f�'�]JC� y� -a, a.. �_�- .�f j 1 : {{ � � . �_ �, _'� � .� r � ; 3 . � � .�. '�''' �q .^- - '� •, �1 i +4;.S�a. t.'�:"1'" _ ;:! r �� ,...-r ?�• o ..�i*F��:.bti u4.�.�. hk._ �_ �.�'�[!�R'SI�,��M�c.�.`- c.r 'F� i t� i;s�:' - '�a� � . .... , • . � .: G� �Y,-:' s _ �. ti _ r� � - - - - s J`� q i' � . S- 6t-,t - .F- N� � �.,?. � .Z (..t '=t�.;y. �Q � � . . � �'• - �, .,� ��" �r-.Y -s+•:�i - - - - �.!�,� - f'� -i 1 �. .., .� ��a. :.- TS3. '�"'Y. . . . � . . _Y S �' - - }� n.... :���3 _ ,4,'.' i f- r 1 W .'Y -,,, •j ' .S'.a. ,} - � �.t -l= "'s3"''` . � - _ 'L ���i: �>' ^c'� +.� �,t�i� � '�,�5, :y�. � . $+ cu'i5 ,.t � �::; �. � '=L .� E 8TH T` :;.� _ �� >,. _ _ Tt�%:-.� _y�'a::- - - . �S S ,,(- �. -�i° y.: '1 ,�k� .�:� :�.:� ` e`! - . . � C' A � � t -, - �•�pi. � • � .j'.. •� �. ! . �.. _t"T� l" _ _ . �� C � � �( '+� �} . . . � �'•/: '!^ f . . - . . �.R.^. �\' .-� '�C� ..� 7- 3C. �!-, H :: i . �.t_. _ � sn'• �-�'ti' � .: �� � �:� �'� - 1' T � "� RECTIFEDAERIALIMAGERY ASMUSSEN ENGINEERING, LLC 0 625 �,250 2,500 3,�50 5,°Feet OKEECHOBEE, FLORIDA ��- Map 5. Average annual storm water nitrogen loadings, Four Seasons Area • • • 79 � • � \ z u c� 0 � � z U Q � m J SUB BASINS SECTIONS 78 1817 � ' �11TRQGE� LC�/�DI�JG LBS/�.�RE FROM STORIVti' F�4W 1AP 5 FOUR SEASC)f�� ARE� QKEECHOBEE CO, FLOF�.ID F�iiregen Loading From �tarm Fiaw (Lb�lAcr�) f�f � e �� �,�0 y 2.87 Lbs / Acre 2.88 Lbs / Acre A ¢ B - y � ; _ � Q, rt r ,�i.�...� -_,- - � i i _' �-. � : D OD' - -- --- --- - � K I H ;, 3,32 Lbs / Acre m � , f � ; C :•�---�;-.:._.,,,;,� E Q ; :- � i � � 2.86 Lbs / Acre '/�.. 3.09 Lbs / Acre � � � 7 Q M � a Acre ,_� °' � � ; ci � ,� � � I UPDATED APRIL 2007 2.88Lbs/Acre OA �Q, � �sI�1., . S'�aL�G� . �� �:. ,; �.. F' , 2.86 Lbs / Acre OY 2.90 Lbs / Acre OC 3.24 Lbs / Acre , w i ? Q E ' ; 3.04 Lbs / Acre � �e2 -" --=_3.06-Lbs /Acre 4 78 Lbs I AcreF T �b --- -- � I G � s � OF��9��� ,• ��' � 3.05 Lbs /Acre i 3.07 Lbs /Acre � W � J � z � '� � � � SE 8TH ST ASMUSSEN ENGINEERING, LLC 0 625 �,25o Z,soo 3,�50 5,°Feet OKEECHOBEE, FLORIDA �=�-��.� �.9e��.� � � Map 6. Average annual storm water phosphorus loadings, Four Seasons Area • • � �' 1 � � � I1 u �����PI�ORIJS LOADI�J� LBS/l�CR� F�:OIV1 STOFZ.� FLOVV �1R�� 6 FOU�. SE�,SONS AREA OKEECHOBEE CO, FLORID� �� �� ��,R�t�� ------- --___.__�.------------------- __—:—_—, 24 --_._.___�---..._._�_�r..___---------._.,___------ 22 __ ___— ---.__---_��. _ �_ _ i- - . , . _ � - . _ ....-- _ : i- � 2 _ _ _ ._ __.___._� _ _ i.._ -' _ __ ; � i � - - . _ __ � _ ;--__ _ � l.6 _ ._ �_.__._ y__ � � - - -� -� p 1.4 - - -- ----__._.._._._.___ _ ��.r _� � 1.2 _ __—_-------- - - -�� i O 1 _ _ --� - - • I ; ' d Q8 _ - - __ _r ¢ Q6 _ _ __ _ __ _ _ t -. m Q4 _ ._ __ . _ _ _ _'. _; SECTIONS —'a2 - - - -_- - - ' 0 78 A B C� D E F G H I J JJ K O> B OC m�� 1817 SUB Bf�SI NS � Sfdfe� �, �. �O �.r .r�� i m - i Q N � � J � O O 1.73 Lbs /Acre � B 2.54 Lbs / Acre '/ �B .� � � '" - i , _�,,,.% , 1.03 Lbs / Acre A ' /��---_--_ - -. ., /� UPDATED APRI� 2007 � �- - 2.56 Lbs / Acre ``�,.. SE 8TH ST • ASf�iIJSSEN ENGINEERING LLC 0 625 �,250 2,500 3,�50 5,00eet OKEECHOBEE FLORIDA 1��� , , ,�..o�.��.,�� O � Map 7. Topography of Okeechobee Southwest Corridor, Okeechobee Co., FL • �J . 81 �� � � �o T�F f t 30 30 30 O z5 M 30 2s 2s 0 UPDAiED MAY 2007 N �' 30 � �, s� 30 �� �30'�— --� � ♦ + ao W � s �o ,� -� - - - • � r � �o�� —J N 24 15 'I 6 „ p � e �15 21 - 25 FEET " v `_ l �� ' «" � I�I � 5 0 `n 26 - 30 FEET `� �^ N O 31 - 35 FEET � N �r' � 15 �� N „'s �� �15� 1s 20�� 1 �/�� �S , 5 � 15 �ZO' 20 _� 'USGSFIVEFOOTCONTOURS ASMUSSEN EI�I�^INEERING, LLC o 0.25 0.5 1 1•Miles OKEECHOBEE, FLORIDA �'�.�-:�: SHOWN AT MSL o H�� � 23 F L O R I�!� I35" '�"'_-s 30 25, t; � ti, �� 30 �p t `�o �,� 2'I 20 0�� �p "�O J� Nl t+� � � O � o Jr 30 30 '� 30 30� _ , - 0 30 M � � M I � � . � � � 28 22 11 12 � �' I �� N 29 �� I , ;�_��'. � I N 7s'�,.. Map 8. Soils map for Okeechobee Southwest Corridor, Okeechobee Co., FL u � • 82 � L J • SOIL� f��.P �� S� O�EECHOBEE ARE� i�llA� 8 Qf�EE�HO�EE CO, FLORIDA State H��dy %0 �EE /�PFE�DIX a, TAB�� 3 FOi� S�I� PROPEF�TIES PEf� B/�Slf� �Sa��� �E�EVifD � SUB BASINS _. RDAMSVILLE FINE SAND; ORGANIC SUBSTRATUM _ BASINGERAND PLACID SOILS; DEPRESSIONAL BASINGER FINE SAND �',�''' FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIONAL � __ � IMMOKALEE FINE SAND ___ . MAnATEE LOAMY FINE SAND; DEPRESSIONAL = s_,. MYAKKA FINE SAND � __:' OKEELANTA MUCK 0 PARKWOOD FINE SAND �t RIVIERA FINE SAND �' .' VALKARIA FINE SAND WATE R 'USDASSURGODATA ASMUSSEN ENGiNEERif��, LL� � \ , 29 UPDATED MAY 2007 9th 1 21 6th � � d' 20 � �' _ � � State Hwy 70 ,= --- � � , N � . . . � -.. 7 :: ,- �. �: 22. 11 28 , ,� .��� Et � � �;;.;, ,�� ,.. r h��; { � 4 - �l' {` . � A�i 4, _ 12 ���`�' 15th 16th � 28 h'' 16th � - r N � � i-- 30 14 �- 23 � � - 27 _ - � "�� �_ � � �_ F - - : � _ . �. 28th � : ;.� � ��,..- . , : 3'1 .� ,� '[ 5 16 g-. - _ 32nd �� t� _ �` �.: 25B �- �.:.r �. : �� �.k z� , . � : ���g � �' � � � . � _�.,� 1 � � i _�. � {... y�� t�r e { , - -- - • ` t �* '�rn y�t 9 n �' .,'. ; y r�� I r " } f � _ J . � i �c .. . . , ` �� t�1 �..� � � � t4 ��- , Y :+L S' '< Y i li' 7 l�- y7 5': � L� f�>*i=�(/J , � e.� /� ` _ �, 7 � 26 � �' �L5f1 r ` � 17y � y � ti` �Q'y�� 'k F • y Vx t �.��. . 1 .- i•l :♦ .7� .��/ �. _ � - , •` � t '• T T t � . � � Y � t �, � ., f t FY -� . � �.1 � .: � �5 - -� � 4y� > � . - } .J �. ��. h �'f � �� + � � �a`+t�r�C e t i .°� 1 � . 4 `�[~� t � )`` 1 �l'1 : ,'Z t. .c v ""'"�'�,'i}"��r�°"�'. � �� _ {� . .;' 4 � � '`. �jv ..i�' ',Y _ - `," . '' ' _ J �� K 1 t; ``Z• . . .._ ..�_. 0 0.25 0.5 � 1�Miles OKEECHOBEE, FLORIDA th r'' � (.O!'„' ��:� N � Map 9. Land use map for Okeechobee Southwest Corridor, Okeechobee Co., FL � � • E:�3 � • u .�4N� USE IVIAP OF �V�J OKEECHOBEE ARE IVIAP 9 OKEEC�OBEE CO, FLORID/� State Hvvy 70 �EE �PPENDIX D, TAB�E 4 FOR �/��'D-uSE PR�PEF�TlES PER BASIN *��41V6' US� L�GEIVD � SUB BASINS MISC AG i _ RESTAURANT BEAUTY PAR NISC RG SF RIGHTS-OF- �_ CENTRALLY MOBILE HOM :____ _ SERVICE ST CHURCHES MULTI-FAM SINGLE FAM � CLUBS/LODG MUNICIPAL STATE �__ COMMUNITY MXD RES/OF �_ STORE/FLEA � CONDOMINIA NAT PASTUR �__ STORES/1 S t—� � CONV STORE �; NIGHTCLUB/ _ _ SUPERMARKE COUNTY � NON AG ACR �:•^ THEATER/AU CROP III �_ NON-PROFIT UTILITIES FINANCIRL �;� O U A �_:.�; VAC INSTIT ' GROVE W/ S� OFFCE BLD VACANT '_____ GROVES,ORC �; OFFICE BLD '; :'� VACANT COM � HOTELS/MOT ;�__ _ OPEN STORA ;�F;�' VACANT IND IMP PASTUR PK/LT RVMH �._ __ VEH SALE/R ��_ INSURANCE � PROFESS OF '__ __ WAREHOSE/D MH PARK PRVT SCHL/ WATER MG D i MH/RV PRK PUBLIC SCH I� MINING � REPAIR SER FLORIDADEPT.OF ASMUSSEN ENGIIVEERING, LLC REVENUE USE CODES 29 16th 30 31 UPDATED MAY 2007 �� �r. T4 . 3� I 9th y � -- ;— —�: _ — — s �� .. r I.'. (. , J � ' /l , � �� � � �_ . , � - - 6th �! �-'' �- yc ��� �' 21 �':�' . �C �'�'� � 20 °' � :� ¢-� _ � �, . � _- � ; _, - ; � �� � J�� - _ - �_ • i ; - � � �' State �wy 70 __ , ' J�,__- L � _ � .-.L. �_ - F'-, - � ---I � - - _ ;�� �--- = th _ '_ " _ii!" ;_� i N � _ . _ ,: r - _. �2 11 12 '! 28 �' 28th 16th � i; 1 , � ^ i 15th � i ° 23 �J F 2! x i � J. ` � 24 26 25B 25A F:'f- � � r 'I 4 pi 13� � '_ _, _ � 15 32nd �� u � %� _r � � 17C � , 28th� _� ; r I � , 1 �., . �_i�� �a d -Y-� ,�. -� �—] c 18. f == 17A t:._ '' i 0 0.25 0.5 1 1.5 Miles OKEECHOBEE, FLORIDA �,� ,�.ob,��.«� M � Map 10. Cover map for Okeechobee Southwest Corridor, Okeechobee Co., FL � � � 84 � V �4�_�^' Nilf'TKI�w�fi.N{I°'J d4Yi I H I �-'� h,� t�E. i. ` � � 7, z�C�'�, �� ��vy .f o �t_� . i�'" !.��t:fi'�'�w.l"4 � 1 � � iT'{�6�it-� ��'y�.._.t.. � ''�1i vi/�t +�j.`r'ri � aa.i n �f'1�'!� �• '�" 4 1���?1 %d ,*� `4�J .R'����e; � �-��i:: 1 * : i , r. �� Cn (t:J � � �, �.� , .. ,a. `°,4bb"�MH Sflrxr� � .0 r !�� �._: s . d rT ,�'p' �'�� >m � � �a �� . � ,..y t�a i �•r, r r,wr ; i �?L T, cc a.- ��..�ql �I����MLR � tJ' u� f�541.' T f'1��. : . i� ryy� .r.i'���,K.�'1c4R`:Fv-'fP�.��-� ,.Iti �`(T.w. «i�y _,., '� � ' r. .' T G .r' � .�` . s �r'. � �f�" i �r�r �'��1�, � � ���s d ty � � ;,;R �v s.'� � ',�t �i � �1 � '� j �1�I�Y�1 �. :�. M � ; r h� , . � �Y' r� IT :' I e-� ' +� ;-`` . �.� {�� r ��, a , x�i .,�1�l. �� �.lI� ��i �� ��+ 1 ��*� . .� �4'a",�;h , 4,`C�� %.�,' i!��(�-i-��:..'�4 .f ....?� `, i+�"�""^"��ryl � .. ��I �: � ■n '1�` I � �i�. - � -���ti � �ti. i. I �,c � ���` 1 � " Lii. ,UJe�7Jf j-. � . . L 7"T��';. � � I,- .. �!4� .. t1'.C��rA .�.a;� c] �i�,}" - ,�,' ��' �.�ti �; � . �'-y� �� �.� ., �?� � . o �'7 .r � r -��: � �. � +., � s�a:d ` li _� �� ri;.� rr;:' r; -`��y�r�,,y-'�d �,�86��(n.n�+�H�YSfllx,�JR�;�'�,�': � � �86'�(nnH s�T���;:�i� �.�,.1 4.�bl�t,'N:_ i .�. f I..c+'.�i��ilf'S:�I � r"i�.q� � ' � 'i,_.��.�. �,{�� *�-F�� ��rI,�T���f�{,� :'�'��� ' � �7 r..���,� ' } � �`' � � 1 3 L �°'s'�"-i �;7'�st �, � ; �� . �f�iq`�7�'"C1ih � � -' � I� `j� iy: f��y"�� ��J'�: �. �''r., NI �'' 4 r; �, � i. :r r� Irz �� n � I g j�` ��f i t:, ,. �'7'ir�i}IG'�t.t�t^j�,�.a � �� ' . - 'l._ . i F7 ��+�.: �,�.�, ► `}`�t+ t',�°i �"�""w �` U�L'� � f � c:.w. y t� i�. L i v } � i� � l� �� f z ra�d�`��.,^�: ti L J 3-. � I � ti.� n l! � �� r t,�usN�j� �' i wl� �_ it . �yJ n�� f � i�,��� n�i 1ai^N��'iJli+.L?it .�.��� �J.LL,aw �� i�trr+�!' /� '� � �rjKf•-ir ^� ������'�y�- �r N .- � � ,:+�'rr i� 'w�'ri,� i� �`��! � !S�' ��c� ����i� 'r,+ i�J m� �f '�4 ��, rH„ ��. M � .:,_. (Y�'�.� �_g_�-� t��{`�,,��,�,� y' JI • 1 f�;. � hr+T L F�'�L-�:-, . .:�S��.w� .L2.tirr� �,�i�e.2 "'�C'._�,_ .Ri-� � '- �:�.e,��daMkl�iSlwll4�l''.i., � �fn,�.,' . �q r '-' r+ � �rr Z •-� �.,. �;. � ,�."c�"'" ^.Y^-t. F � . c� ��'r � ��"` r " �,1�'i'id?}�'r f r^lirr 11. ��ir + i' k '" � ( � J'�i i`'� � 4-5f. 'o� �,r.,F..S. m' i � j ; r. t �M ,-i��jii �IK, . �� ., �'.,17}� ', �' � . . �'ti �'1 [* �� � • t � �'�� I'. ��� y� c F .� I� �``� �, fi-;5 , , �,r� ; rr— � ; L ��� ,�u f i f ,.�r. t �, ��z .� �� ^ Sy+�„��r,�tj�,,F7�4�i� .:g�'�` i��= ,sp.�,i� � "�° i �;� P"« � ��r�r��' ���,,,�r�'��ap i"'��'�� ��4� ,�s"'�!�"°� �. 1t }.. J�h�. (�S { i•� T � A r i+ \ I L.>.., b"� �• a rf a.r a�> > .dcJ t�rl i IF �i T ' li 1 7}. +� i � M M^ _i � ��� 4 .�itVZi}�a ^�, rT/ t�y�.� 4�7 �'.�a t , l� Y�,f7 i�� � l l �l:.a ,y � V �� :��i '�7�' .t4y, j� t��w � ,' r�Yi �� i:,i.'iti.� �� `��Y 1� ; � C i t��F", �"� - - '� � , ����� � �:� • r��L r�*�.� .���*�Y� ��jl 1 �'- r � . ' a i: :. F'/ � '� � � N'�... an : `� ,,.� I I . �� �� i i� � �.i� � ,� .+ s a;�l ���r.- �� /b9�+::wv.. e��f t�.. 7 �� r .ir- � II � ��l' � s �' � _�, �':fit �,,�;il'=' � e#+� Jrr .� .r� +! - .'� .l 'TM � k . . � . , � 7 � �j :; , v a� i � �- , ,. r,,, ( }"+� � , ,.� 1��,; . k•� i� ��.p'"��`,� �'wi� 1 �.,.. ' � �k�''��i�� f� ��;����k'` y!w i b, ti �l. � J k .,:� � �1 ; �r � ���l.7� t� �t r r�A i ��` '` • ' �Vw� ` � � , d Cr� �9T ��� . r. +� . '�; �l 7 � �L�� i. 1 t � ' � S �.' 9 k�c:.�wy � } �r�� r*-! . � F a'+ �'(� . I, �.,p 4� �'�aT yr� ,.r ��,I� « ;�l.t�,{.7,_�'t�:� /4 � �, c ��I(SfS� �r �;; ':nffk,, �,S��1 }. �.. �!,�� 5,L�! t�t7i ,�, 1 �� ,. 4'R"�:: ' r � N��� ( j��r lY1 � + ' I i, r �-._ t r i)MFF.` � \. ? r Q � �, fSl�!'�? ;`jG ' � � `s,.�i �. �,��'h nT �, .ty s^���,,,.�i�J�� �•*a�t,��. ..+: �� � L .� ,: 1 � +���..� ��:�n� , �, ..:�,'�.�� �� �1 � . m t n � �' ,r� f� 1F.F',n r; �. :r * -. � �T F Py� i1� t'1 �:.� � � .. t' �� � � !'-rF, .�' � : .. �. . t tn.. ; Y �r'n . 1 fi- �.F, a'� � '��_ �� �: ,�� �:�%� �t � � �,�;}� S�i..�.c� �� 1 � C �i j ,.�I �h,�Fr��i �•L�74�\i' r�,�r��r�'''rs. �'�' ,./ I �'.; -��� kf'�� �: �iiC-'��,� � � .��:t� � ir � � �-�I . r y ' .. t .l �. }�, � �.b � 1 ,ft �sr�F � � � ,�'r:,,,�.i.; A� FjrS t . {�4 f. � �� � .� 4 '',�., '.y i +. *` . ,"."'^ � � �%�.��1�1 1u-t� ? ._ � r;., ry � �i�t� � i �'.� � ir�� ker! ` �i�� ��� 7. � �� n � �i7,.� � r � �F �P�:1..U- y. �.� -'a �i `:� ..G r � � � � ^�.�,'.it�... � � .� elfr4'I �✓C,� �"�y� � E_ ..T� �O`"�'� �:;� C q �:, f .. Y��.t. � ��-.5 r G.YEi� ih.f .. +'� ._ys,.i . - � --:� !� ' w ._ I .1'�''ii i:.. U 1:''.c. !J �*"fN', � s'�.i 7:7t}ir�,+kr,y-r�';� i � 1 �`�( n, . �;i���a . i. r � Fj�� �.�' �'.y�ti 1�-� y ��L� � .�,�'/' - ,r ��a`,'c'��yky°� ;�Jr,-�e•�'��r7"� . � '�n ,�� �-. .�,.5. - .,'�'MT" �T� • � O t E �n��fr(�,�j �3��; Y €';e �" .�'�nl .GCoF � .�Y'A� iT"Yrac7�is'�' � :i ,� � ��,�"� ��yt,. ..li �j � �, � .. �.Y -ft r^ � �.. .. m � ��'7F1.. . �f f�Y+E�'�' �� �} �: i �' a' ° �� m r�+� Y�� i1�i ^t ) a Y"l, 3 . �. � � � t '�S' .N �i ,�'�. i„ � g ' t ,r -f� ': �U ' i �� t ���1.�-. ���'���lK�V�c} cc.�+� .� . G w.r � .�� 5 k..: - � -•-• ' �.j,, Yo*c ✓vhy`�� i ��' t.,'„" -.'r,.1Cp ��'.4'ci���k'��+; w � r :"���_'� '� �.i. .�vY.� �T "'�t:'r � .,` O I �' f �i �, S�. ix" � r.•` I � r ��v`�'�' �1n+�l��r � a ry�� n c, t�..r• :� 1�� r 2 f� ���f !a�'��w n���n f; ' �5�� �rY� �,ye+'4,%I�y�i��,,.,(`%'�f,�,,��,,,s5��=. ti �-t � ,!,: :�'' � � O f °� � � , t �, i?��''�v � t�,. 54�rs''t�f� a`:' 4 � �� ~ � � A � ` � � A « l �K a rt :,�'.t �'yc'1���31 � � , �. �.1- '`�. � � d'l'f ` a i w��� ` � lr e � 3 y�l y �Y.. d` i �ir . ��. r, �,� ��?`.�'I' v�" r � t:u. < i` . t� �,�y.�+,fi.f�, �. a� , b .rl� � �-.. � i� � . Q - S, M{•l����� r'�t� : A �rr� A � y1 � �!(� . ti�,. 1 ��yy'�,� . }�� I�` .� ; �.�4 �' � ¢�► �:-, y � � � 4 � p�-�:'�@ �. ..�,�,y,n,� � c —� - �. �..��i - � �� '.� ��� � .s �� f , ,�. �'y ` -",+,5 �"t a i _ .:` i ,�'}��'�yr*� °, {' � . �}�k; � 7��. r y �,�t. � r: �;; " i: i � ��;:f i' k� L !. � �A.��,� i ��� P �r� �` 1''-):. .�( iL :SIw � YN� L �. . � �'A r.% 1 y � i i :�'r ... � '�"3 - � � �,{fF a � .�: -� �: �. �� � 1 'q 3�j � v. � �.`. �l ^ �� �`� � �(� � . � ii :� i�y."� 3t`� r' a' �'.d'-�..'.� �I � 4• � .�.,� � r" �4,Qy � f, /t' y�,` �i�,�' �-0 Q Eh r=,� ";� �"� �'� , �� �� y r ��� - '1 ;, f..s_: • `a �. d= € �= g , �{. � rii � � � L.i� O � w O U W O � N L!� G r � :1 Ef�' / s.+ '.�F ;fp �.. w " : � 'j �.�. 4� . �� F� _ II..;. � , t �" - �/ A J � .o ..- �. `I� ,�, � , _. . __._� . �. }:Y , _ ' . . .�. � _ � (�'`;�� ��yP � ���� �J � ( , :1. k ,r [r�.�,-�F � ,.� � �.; . t � r G .;y� i �:c;�` �'� °o '� } �7�r�yli�� i v�r : t � I f� � I.,; � v U� i I�t t � i .• a � 7 t t t 7 ,�� �,� `� }'�;*'-` , { r v $� • Z��jr :!:�'r „wr,��r-< 4r�i� � • r ' r �r.� �:L. �J.J r �� � �' �.. . �(;� p R 1«,'- ��a, �.r�,,it, .� � .. '>� � ' � - �+s,-� ; n• � ^ � f� 5 y., �."�iifA r :.7:Lr�i t��.;,jp, � �4,��'�7i'` ���VL'A'r-C;I��,. -• ° � _�" r .- .�, : _ 4' w W F 6.� ✓� F�., ,� � f/ f Ar-- ' :�, . I �,�.; � rirl f.�:� , j��� ...rFt k ` `.t ,� "`-�yJ ,��,.L r {r r ri � s.- ri �SiJf;�y��,��' i�.��`�; �( -.. a '�+�,�� �-�i .+:c �' - v i.`. � W � � f+�i'0�. �' 7 A�-�e �'�` °� � p�+�y'�w •��,yi� � "�r F .E'vtixunt � '� ♦ . _ er� , s K "�.�.� �`�` i -, �M ..�'���� ' . � � �a�'�.�¢m�� f�t�',��„����_ �}'i��'��j���€��pN� �'_- ;�t��J�� � °�� � � �f �:� . I..LJ I � r_ .�_f,� n , �Y , O..p, t ` ��0� i � ` .� � .tT�jcRi y��,�t �4 � � Y� j ./� f�. � .� .,. 1 ,��' 7� _ °� ; � �q -�' y � ' 1 :.� .. � T , � '" � . . } � � "J� t .'f.,.,y�..,Y+ ," �„ / � . .� � �•ti ,�, � "`. ..:. « q' � � ( I . 4. T y � �J � . ''' �, f, � : 1 (. ' ( � � � � a ��� '; I � 1 �I N O � � .. �, 1 � ( . t y^ ,�r � � . � _. ) r-.�.., { t'f" � � + � c : 1, .A. t � 9 -cr �-: , I �- I �� r °. � , 6�+' �- ,� .. ,� -�+--� s h x_ , � , s � r p � R�4 _ f ,t- �-. � '�p _-'7 ... . �,' >��� �� r' C�14ij�y'cu%�r'�" �.o I ��F' �e�`. � i � �j1' '�' a �� i� 1 � ft :�, l ✓;;. � '� � . f �� .�'� 1� "�;���j.• _ r' _ � � � �� 1:. m4 �Y �i � O � �0� a, (� '. �. � � , � , ; Q-�„�� 49 �' .f �� � � y Y �'' f1f `v e� � � � ' , . w 7 �" � .i I.J� � ,= i� ��� �._ r . ` � y � ''Q • p� , ` t.'.. , ,� O � � ; . . .� ,� - � `!e '�R � ,s�i � �,y1 . k �1F "� .. � Q � �! ; � , � x�.� �� �.._,� � �. t.'��(� � ° � ..., �+ � I � �t� • ^ •'rii . y �M 'I'�f`.�' Y� � �'?� � � K �� : �.. � �', a � : � O � '' � r _��'s :�t�; , 1� ��.�_a,�'jj`' •:e '� .e �,�.�d�� � � .j , �;r� ��. � F � '�yp �,:! �.. . ' f �����::;:�: � � ��„p-. r ��� .._ +�r _ - : � � . . �` r"s � �i; ��� {`_ - � ^ �' >, �" ..��b,'.Ws- � .2�,`�°e4!x�¢:��T -} ' ° � ;; WI..L I ��.� .� Stl�� �r x.� ,� J y yi�x a i.-r� �r i: ', I jI i ��� .r i G/1 �, �d� . '.� . �'� �`E� �yS4�4u� �I � � � `,i i�.'. .:�i ''� :/' `+' �..+{�a. labr'.i f i � :�f� I . k.+.�'�i � � lh t� . � , \ �t . � r!: ,1 .q�: :wl�s.I.,,,. .�i .. �.vr . � . k F� '�r �.���- . . M����f ��!• � .a. �'i I I ,-.� - .:..r„ ��, �����' � S � , � T �i ���P���L� _ � I .V . '.I � 4 , �:� y�f.� O G.t:w�' I ,1 � .�` - tl ��,�il"i_�=��' _/ _ t"'� �. �-�. P E, '� -- ' �� �p , � "� '�F ; q �p � r � t Y' 1� •. a. _ . ,_ . - ,�"r[�3 " �t. �i �. + f �'.. i,-.ii ♦ "' +l �, � ",���� �\ \ �, �.. �;�',� ����, SR � �. � �n� ;"�.-i. „+a Y �. � ! . f�, f � � +' : _ �.i r. t 1 Y i1t I� '�'{ I � .+'�, tt.,,� ry .�,� "F`M.'�ySp idi i � �6 1 f .�4 r j�c L.� �y : t,. i; J,` iC'. f. + i r �h: Y '"�.Ji I 1 � al!'� � j - _ti.. _ d! !� ' ! 4"� r , . . t � 7:�ui � J � ` { � � � t� a�r� �+�� � 1{ e; §�I� I i. ir; i t -�-� ,�'�- �. � J � U ( ' "� %--` — _ ' ; xrt- � I a -�� _,-x � . X�? ��+'r^! f ' �+.+� � " I� ��' �- �` �r x " 't�'�.'�R!'�'a ;� r � � �. . }. �:, 1 �C� I1 h 1�! � ?�'� t � � • � _ "� � - ,4 .l; t:. ..'= � . ._ .. . ...-' �a'�.?F��, 1 . _ � } �� i _ � .� s ',t� � � . � , ` ��'4�c r a. I .� ,yi�" tn `sw t'r J � h • I�, k 1 , �'�tt r � � 1 . 1 � , 1 �;�. ,�} �as'� - � ; � . , N/ ,1, . �. r l a^I i, �r . 'i1 ' . � .M �l � :, , , i ; � �. .,, I ` r� Y , y � C , L . . ^ � r � � �� J _ r I P '�p � 2f�.?3.j !, i � • at t + .�+ . ` i'�' W K � �' �'. � ;�. � j f ��i� - ` ;y - t � . ll.i,. ♦ � 1 L . ;' �� � Gl `\S.C'�`�� ' �'A a .' _ .;, � . ,. � ",��� fe �, .�,� °i .t, .� /� / ' 1 �,, •t1 r:p� �. '��T ,.' ,�.: �, r d � ���i � ,, �,,, , ,i ° `R' k' i �I : ;rF� � ' p � c-. ,r, � t � ,��' � �i ��r�� i ' , �,,�:,�,,.�,. , � �If �' t% � h� (n � yr� � r` .r ' � } .s v.i 4 � y,�� � � .. � /��.Y'�,' �' z Q � }�� - y - �r ' ��k yi�q �/ ,.:��� � � r eti.. +}���bSVr� ._. �I� (n Q' � ` :, ir } 11,`�,��! �-- 'r ��`� ,� �n u 4r :' �I .IS9,yc �y ��, � ,ff Y � (� i , s ' � ��: ,:1 a;w � Q � , i r-� /r r. a� l ;. :�`��x,,.r-�'} � 5 �' o Cp Z � � � �' � � ' �` � � � f , j ,; ' t y.+�-'r'��' � ' � � ` 1,, � Q Q � :' � I .� � j { f J''�y,t s-.J � =t '�� ` �l - T� �,�' t.': LN . .� a �t"� �. �._ � � ^ in U �G �` v � � s-' l, {.� � - i �. / , ��:; ak ���, �' _� n r 4� F�.}. . j'4�vti � �/ �, � f � r+ I i'�'r _ -�s �' � � � 1 �Gi � k� a �^ / � � � i � � � `i4�`i �{ �r .,.ewriC ..� . :_ r Y����,j '� .�h: ,,.{'���`r�.� �, } J � .. � " � �F14 �� t � '� �'„ �" li f�t\'� 1 �`�' �(�".- . . ��� " --'r '_ � I _- � .� ��. :. { , 1 ,. ..I � I t a I 1� '�r , l� +r�ir• ..'�� i;.�. P� � , � .' t '..""" � r� ' � . it ��� � . � � � rz,� � ( �,'.� :�' , � �;�.. � ':. � ,. . _: .�6'y�qy �� � ', I - e . � 3 . ,F a ��p � � r� � : r - y 14 ✓ :,,y�� .V ti "1 �r ury i �'.�l"�'��9� .5'. _y� cns "��� .� �..� � : � � . . - j �C'rS � �� t s � �: f'd� � S� ,��-. �� } ; . 1 �� �i . ;�.. , !j � ' tki . . :5`.'r:/ ; J J � Z 1..� W Z v W W vi � � Y l lt��: � : /J �' �M {14.�i^� f O W� �j ,�t 4•f�w- �>- ti, � W � � �� - .r Y 17r � C7 � �:� e ";�� ��� W Q �'�'�, /y� 1 x � � dL��y,, . `'r' /' l � Q. f *=/.'i�l� � �i.� F- W � r �''i i °o" ry � ...r � l.�l��. LLH ��� U � �9 A ',� � w o� �._;i � i, ::. o � • s "'�."'*l1�7'�.� 'sR , ���_ � « _� w,�.� f , Y � )., -,..... . --�. ��� r� � I Map 11. Average annual storm water nitrogen loadings, � Okeechobee Southwest Corridor, Okeechobee Co., FL � u 85 �J � • I ���'�QGEF� L��DlNG LBS/AGd�.� F�.�I�ro'� STQRi�I FLOW iVI�,E� �� �V"�' OKEECHO��� �C), �LORIDA State Hwy 70 � LI � ___ d' NFtrocxn L.oacirx� FrocssStormFiow(Lts/�e) �S�USSEN ENGINEERIN�, LLC 28 2.47 LBS /ACRE U!'DATED MAY 2007 �' �. _ 9th y; - _ - _ _ - . ; �_---� — � �- �.� ,, . .��.�. _ _ _ . '. -� ". ... r 4���4^ , . w � €. > Bth � : . ' � � v ,�2`� . zs! 5s; cc�� 20 >` 3 i 'g� _ � � L N � � �` � Park State Hwy 70 _ _:�..w.,_.:... _ - �:-. � � ��-�,�•�:�`_�r''�4th � � � �'r�" ` � �� c �� ` � �. f . j. � .. • �,.11�kj�• i � 22 'f 1 � •`` � , ') 2 3.61 LBS lACRE '� 3.79 L65 JACRE ` 3.64 l6$ f RCRF , 29 �� 2.40 LBS /ACRE -�� . � �,�:- �I . } `. �'' E� ' 16th 28th 16th L 15th t � ` , - . _. . . _ __. - - ----- _ _ � _ _ _ _ - -- - --- _� �_ _. - �' N =; w �( � ¢ � �i � � m J � 2.77 LBS /ACRE 30 m 23 13 � 14 1 fV r ' 3.04LBS/ACRE II 2.78LBSIACRE � 3.14LBS/ACRE � 27 i I � I 28th { � __._ _ _. _ - _______ ______ _ _ -- -- - � � 2.09 LBS 1ACRE 2.38 LBS /ACRE 2.37 LBS /ACRE � 3.81 LBS /ACRE � 31 24 'I 5 16 1'• --- — _ . _ _ 32nd _--- - - __ _ --- i _- - - - ---- ---- _ � 2.41 LBS/ACRE � � � � 2G6 ,, 3.45LBSlACRE i i U J ��� a i � --- -- � ' c! � I f� I F � 26 F , 25A '� 7 C 3 03 l85 / ACRE � ' 205LBS/ACRE a25L'nS/ACRE � H i ��� �` � � 2.11 LBSfACRc �` � 17A N� '- - --- ---- - __ ---- ___ � � 2.45 LBS /ACRE `, 1 ' �I 19 5�atie ` `�� _ . 0 0.25 0.5 1 1•�iles OKEECHOBEE, FLORIDA - �-: �.�� o M.��,�«or .. Map 12. Average annual storm water phosphorus loadings, • Okeechobee Southwest Corridor, Okeechobee Co., FL � • 86 � � i • 'HOSPHORUS LO/�DING LBS/ACRE FROIVI STORIVI FLOl� IVIAP 12 SV1! OKEECHO�EE CO, FLOF�ID/� State Hwy 70 � � � PF�honis L,oaiing FromStamFlow(LJxJAa�e) z: zc � � o i.s _ a � 0 x a � 'I.0 U a C%7 m J O.S 0.0 SUB B4SIN ASMUSSEN ENGINEERING, LLC L5H � 7C 3.03 LB5/ACRE 2.OE LBS i ACRE i 4.28 LBS lACRE � S f ; � , ' oi .`K� � {.'-_'_'_. '__� ' 7 211185/ACRE "� 17A � � � - �-; I---- � - � �� � 245EBS6ACFtE � ..i� �._ - - . _ .. . . �� 0 0.25 0.5 1 1.5 Miles _ _ _ —_ . .._ - 28 2.471B5 /ACRE UF'DAYED MAY 2007 r 9th �,E, _ r . _ . s.��� _ -_ _ �,.- ;y.�r• .: T„ .riz.,�lr.t� � � �tn � � � �, 21 d z5 �6�,A�n= 20 3 �.. 7 T � _ m � � � � I � State H�vy 70 _ ,�---___ _-- -Pa rk- - -- - - �, Nj T i � 22 11 3.61 L6S lACRE . 3.19 LBS /ACRE �,4th 12 3.8;LBS/ACRE � OKEECHOBEE, FLORIDA �:�.�- � � • APPENDIX D—TABLES Table 1. Soil series by sub-basin, Four Seasons Area, Okeechobee Co., FL............88 Table 2. Land use by sub-basin, Four Seasons Area, Okeechobee Co., FL ..............89 Table 3. Soil series by basin, Okeechobee Southwest Corridor, Okeechobee Co., FL ...........................................................................................90 Table 4. Land use by basin, Okeechobee Southwest Corridor, Okeechobee Co., FL ...........................................................................................91 . � 87 • Table 1. Soil series by sub-basin, Four Seasons Area, Okeechobee Co., FL • i ,.. • ❑ TABLE 1 SOIL SERIES BY SUB BASIN FOUR SEASONS AREA, OKEECHOBEE, CO., FL SUB-BASIN SOIL SERIES ACRES PCT A TOTAL ACRES: 215.00 BASINGER AND PLACID SOILS; DEFRESSIONAL 361 1.68% FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIONAL 4721 21.96% IMMOKALEE FINE SAND 118.30 55.02% MYAKKA FINE SAND 9.10 4.23% ST. JOHNS FINE SAND 36.84 17.14% B TOTAL ACRES: 120.00 FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIONAL 4522 37.68% IMMOKALEE FINE SAND 3926 32.72% MYAKKA FINE SAND 1778 14.82% ST. JOHNS FINE SAND 18.28 15.23% C TOTAL ACRES: 62.00 FLORIDANA; RIVERIA AND PLACID SOILS: DEPRESSIONAL 22.16 35.74% MYAKKA FINE SAND 39.42 63.58 % CC TOTAL ACRES: 12.00 FLORIDANA; RIVERIA AND PLACID SOILS; DEPRESSIONAL 4.14 34.53% MYAKKA FINE SAND 2.71 22.62% WABASSO FINE SAND 5.�8 43.18% � TOTAL ACRES: 79.00 FLORIDANA; RIVERIA AND PLACID SOILS�, DEPRESSIONAL 4.05 5.14% IMMOKALEE FINE SAND 6.49 8.21 % MYAKKAFINESAND 6698 84.79% ST. JOHNS FINE SAND 0.66 0.83% WABAS50 FINE SAND 0.39 0.50% E TOTAL ACRES: 141.00 BASINGER AND PLACID SOILS; DEPRESSIONAL 2.94 2.08% FLORIDANA; RIVERIA AND PLACID SOILS; DEPRESSIONAL 924 0.07 IMMOKALEE FINE SAND 30.15 21.38% MYAKKA FINE SAND 53.68 38.07 % PARKWOOD FINE SAND 3.31 2.35% VJABASSO FINE SAND 41.80 29.65% F TOTAL ACRES: 146.00 FLORIDANA; RNERIA AND PLACID SOILS; DEPRESSIONAL 34.47 23.61 % PARKWOOD FINE SAND 18.92 12.96 % WABASSO FINE SAND 92 91 63.64 % SUB-BASIN SOIL SERIES ACRES PCT I TOTAL ACRES: 103.00 FLORIDANA; RIVERIA AND PLACID SOILS; DEPRESSiONAL 6.62 6.42% IMMOKALEE FINE SAND 18.81 18.26% WABASSO FINE SAND 77.80 75.53% J TOTAL ACRES: 39.00 BASINGER AND PLACID SOILS�, DEPRESSIONAL 2.06 5.29% FLORIDANA; RNERIA AND PLACID SOILS; DEPRESSIONAL 7A0 17.95% FT. DRUM FINE SAND 8.46 21.70% IM�J�OKALEE FINE SAND 12.90 33.09 % '✓i,'ABASSO FINE SAND 8.48 21.76 % JJ K OA OB OC OD TOTAL ACRES: 3.60 FLORIDANA; RNERIA AND PLACID SOILS; DEPRESSIONAL 029 8.15% WABASSO FINE SAND 3.33 92.46% TOTAL ACRES: 66.00 BASINGER AND PLACID SOILS; DEPRESSIONAL 478 7.24% FLORIDANA; RIVERIA AND PLACID SOILS; DEPRESSIONAL 4.46 6.76% IMMOKALEE FWE SAND 20.87 31.63% MYAKKA FINE SAND 25.03 37.92% WABASSO FINE SAND 10.62 16.09 % TOTAL ACRES: 235.00 IMMOKALEE FINE SAND 234.75 99.69 % TOTAL ACRES: 270.00 BASINGER AND PLACID SOILS�, CEPRESSIONAL 46 58 17.25 % IMMOKALEE FINE SAND 73.18 27.10 % MYAKKA FINE SAND 120.14 44.50 % OKEELANTA MUCK 30.16 11.17 % TOTAL ACRES: 686.00 BASINGER AND PLACID SOILS; DEPRESSIONA� 24.15 3.52% IMMOKALEE FINE SAND 316.99 46.21 % MYAKKA FINE SAND 256.76 37.43% OKEELANTA MUCK 6577 9.59% WA9ASS0 FINE SAND 22.05 3.21 % TOTAL ACRES: 99.00 BASINGER AND PLACID SOILS; DEPRESSIONAL 1.44 1.45% BASINGER FINE SAND 5.18 5.23% � � Table 2. Land use by sub-basin, Four Seasons Area, Okeechobee Co., FL � � :� \ J r� 1 L J � IMP PASTUR MOBILE HOM NON AG ACR RIGHTS-OF-WAY RSF W/ RV SINGLE FAM VACANT TOTAL ACRES: 67 IMP PASTUR MOBILE HOM NON AG ACR RIGHTS-OF-WAY SINGLE FAM VACANT TOTAL ACRES: 120 IMP PASTUR MOBILE HOM NON AG ACR RIGHTS-OF-WAY RSF W/ RV SINGLE FAM UTILITIES VACANT TOTAL ACRES: 103 IMP PASTUR MOBILE HOM NON AG ACR PK/LT RVMH RIGHTS-OF-WAY SINGLE FAM VACANT TOTAL ACRES: 39 IMP PASTUR MOBILE HOM RIGHTS-OF-WAY TOTAL ACRES: 3.6 IMP PASTUR MOBILE HOM RIGHTS-OF-WAY SUB BASIN A B C CC � E LAND USE ACRES PCT TOTAL ACRES: 215 IMP PASTUR MOBILE HOM NON AG ACR RIGHTS-OF-WAY SINGLE FAM VACANT VACANT COM WAREHOSE/D TOTAL ACRES: 120 MOBILE HOM NON AG ACR RIGHTS-OF-WAY SINGLE FAM VACANT VACANT COM TOTAL ACRES: 62 MOBILE HOM RIGHTS-OF-WAY SINGLE FAM VACANT TOTAL ACRES: 12 MOBILE HOM RIGHTS-OF-WAY SINGLE FAM VACANT TOTAL ACRES: 79 IMP PASTUR MH/RV PRK MOBILE HOM RIGHTS-OF-WAY SINGLE FAM VACANT TOTAL ACRES: 141 IMP PASTUR MOBILE HOM NON AG ACR RIGHTS-OF-WAY SINGLE FAM VACANT 25.20 11.72% 61.67 28.68% 61.44 28.58°/a 14.11 6.56% 42.91 19.96% 3.60 1.67% 1.04 0.48% 2.04 0.95% 37.87 31.55% 29.85 24.87% 21.55 17.96% 16.86 14.05% 12.03 10.03% 0.99 0.83% 28.63 46.18% 11.69 18.85°/a 10.94 17.64% 10.31 16.63% 4.96 41.36% 3.35 27.92% 1.92 15.99% 1.84 15.36% 5.74 7.26% 2.50 3.17% 40.20 50.89% 12.73 16.12°/a 14.33 18.14% 3.16 4.00% 70.62 50.08% 18.48 13.11% 23.94 16.98% 7.56 5.36% 5.20 3.69% 8.48 6.02% TABLE 2 LAND USE BY SUB BASIN FOUR SEASONS AREA, OKEECHOBEE CO., FL SUB BASIN LAND USE ACRES PCT F TOTAL ACRES: 146 G H J JJ 84.85 58.12% 14.47 9.91% 12.71 8.71% 0.17 0.11% 5.38 3.69% 23.64 16.19% 7.97 5.46% 13.44 20.05% 9.10 13.59°/a 10.92 16.30% 0.62 0.92% 28.97 43.23% 2.33 3.48% 14.05 11.71% 52.88 44.07°/a 10.10 8.42% 15.67 13.06% 5.53 4.60% 14.39 11.99% 0.39 0.33% 5.78 4.82% 38.61 37.48% 26.76 25.98% 4.80 4.66% 8.77 8.52% 6.34 6.16% 12.58 12.21% 4.06 3.95% 36.57 93.78% 0.65 1.66% 0.78 2.00% 2.14 59.45% 1.41 39.09% 0.07 2.00% SUB BASIN K 37l OB OC .. LAND USE ACRES PCT TOTAL ACRES: 66 IMP PASTUR MOBILE HOM NON AG ACR RSF W/ RV RIGHTS-OF-WAY SINGLE FAM VACANT TOTAL ACRES IMP PASTUR RIGHTS-OF-WAY SINGLE FAM VACANT TOTAL ACRES IMP PASTUR MOBILE HOM NON AG ACR OFFICE BLD RIGHTS-OF-WAY TOTAL ACRES IMP PASTUR MISC AG MH MOBILE HOM MULTI-FAM NON AG ACR RIGHTS-OF-WAY SINGLE FAM TOTAL ACRES COUNTY IMP PASTUR MOBILE HOM RIGHTS-OF-WAY SINGLE FAM VACANT 9.72 14.72% 28.61 43.34°/a 4.97 7.53% 2.81 4.26% 7.85 11.89°/a 9.12 13.82% 2.34 3.55°/a 235 95.92 40.82% 3.47 1.47°/a 9.52 4.05% 125.80 53.53% 270 194.38 71.99% 10.41 3.86% 53.42 19.79% 4.90 1.81% 6.95 2.57% 686 544.37 79.35% 1.52 0.22% 77.15 11.25% 0.20 0.03% 22.72 3.31 % 12.04 1.75% 19.10 2.78% 99 OE TOTAL ACRES: 109 IMP PASTUR MOBILE HOM RIGHTS-OF-WAY VACANT OF TOTAL ACRES: 49 IMP PASTUR 0.16 0.16% 22.58 22.81 % 39.37 39.77% 11.14 11.25% 7.22 7.30°/a 18.44 18.63% 103.33 94.80% 1.10 1.01% 1.11 1.01% 3.71 3.40% 48.71 99.41 % • Table 3. Soil series by basin, Okeechobee Southwest Corridor, Okeechobee Co., FL � � .� TABLE 3 SOIL SERIES BY BASIN OKEECHOBEE SOUTHWEST CORRIDOR, OKEECHOBEE CO., FL SUB BASIN SOILSERIES ACRES PCT SUB BASIN SOILSERIES ACRES PCT 11 TOTAL ACRES: 326 22 TOTAL ACRES: 320 BASINGER FINE SAND 2.1 0.66% BASINGER AND PLACID SOILS; DEPRESSIONAL 17.3 5.42% FLORIDAN& RIVERIAAND PLACID SOILS; DEPRESSIONAL 11.0 3.37% BASINGER FINE SAND 27.8 8.67% IMMOKALEE FINE SAND 237.9 72.98% FLORIDANA;RIVERIAAND PLACID SOILS; DEPRESSIONAL 6.7 2.09% MYAKKA FINE SAND 75.4 23.13% IMMOKALEE FINE SAND 174.8 54.62% VALKARIA FINE SAND 0.3 0.09% MYAKKA FINE SAND 50.2 15.68% 12 TOTAL ACRES: 274 VALKARIA FINE SAND 43.6 13.62% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 2.3 0.86% 23 TOTAL ACRES: 301 IMMOKALEE FINE SAND 245.1 89.44% BASINGER FINE SAND 10.7 3.55% MYAKKA FINE SAND 25.0 9.12% FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIONAL 18.6 6.17% 13 TOTAL ACRES: 243 IMMOKALEE FINE SAND 216.4 71.89% BASINGER FINE SAND 13.8 5.69% PARKWOOD FINE SAND 54.1 17.97% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 105.3 43.32% 24 TOTAL ACRES: 97 IMMOKALEE FINE SAND 89.2 36.69% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 87.8 90.49% PARKWOOD FINE SAND 35.2 14.47% PARKWOOD FINE SAND 10.0 10.26% 14 TOTAL ACRES: 203 25A TOTAL ACRES: 367 BASINGER FINE SAND 13.4 6.61% FLORIDAN&RIVERIAAND PLACID SOILS; DEPRESSIONAL 343.0 93.47% FLORIDANA; RIVERIA AND PLACID SOILS; DEPRESSIONAL 53.0 26.10% MANATEE LOAMY FINE SAND; DEPRESSIONAL 7.8 2.14% IMMOKALEE FINE SAND 132.2 65.12% 25B TOTAL ACRES: 28 15 TOTAL ACRES: 78 FLORIDANA;RIVERIA AND PLACID SOILS; DEPRESSIONAL 28.0 100.00% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 77.5 99.42% 26 TOTAL ACRES: 233 PARKWOOD FINE SAND 0.7 0.93% FLORIDAN& RIVERIAAND PLACID SOILS; DEPRESSIONAL 153.1 65.69% 16 TOTAL ACRES: 66 MANATEE LOAMY FINE SAND; DEPRESSIONAL 50.3 21.58% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 65.9 99.80% RIVIERA FINE SAND 0.4 0.17% 17A TOTAL ACRES: 65 WATER 31.5 13.51% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 59.7 91.77% 27 TOTAL ACRES: 246 • MANATEE LOAMY FINE SAND; DEPRESSIONAL 4.1 6.35% BASINGER FINE SAND 42.3 17.18% 17B TOTAL ACRES: 53 FLORIDAN&RIVERIAAND PLACID SOILS; DEPRESSIONAL 53.4 21.71% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 40.5 76.42% IMMOKALEE FINE SAND 116.7 47.43% WATER 12.5 23.55% PARKWOOD FINE SAND 32.5 13.21% 17C TOTAL ACRES: 142 WATER 0.1 0.03% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 137.2 96.62% 28 TOTAL ACRES: 303 OKEELANTA MUCK 4.8 3.38% BASINGER AND PLACID SOILS; DEPRESSIONAL 1.6 0.52% 18 TOTAL ACRES: 332 BASINGER FINE SAND 56.5 18.64% ADAMSVILLE FINE SAND;ORGANIC SUBSTRATUM 12.3 3.71% FLORIDAN&RIVERIAAND PLACID SOILS; DEPRESSIONAL 43.1 14.22% BASINGER FINE SAND 2.3 0.71% IMMOKALEE FINE SAND 201.3 66.42% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 265.9 80.08% MYAKKA FINE SAND 0.9 0.28% OKEELANTA MUCK 37.1 11.18% VALKARIA FINE SAND 5.0 1.65% WATER 9.9 2.99% 29 TOTAL ACRES: 331 19 TOTAL ACRES: 85 BASINGER AND PLACID SOILS; DEPRESSIONAL 7.1 2.14% ADAMSVILLE FINE SAND;ORGANIC SUBSTRATUM 11.5 13.52% BASINGER FINE SAND 40.4 12.20% BASINGER FINE SAND 3.2 3.75% IMMOKALEE FINE SAND 264.4 79.88% FLORIDAN& RIVERIA AND PLACID SOILS; DEPRESSIONAL 97.3 114.50% MYAKKA FINE SAND 24.8 7.49% MANATEE LOAMY FINE SAND; DEPRESSIONAL 0.1 0.09% VALKARIA FINE SAND 7.5 2.28% OKEELANTA MUCK 2.8 3.24% 30 TOTAL ACRES: 353 20 TOTAL ACRES: 324 BASINGER AND PLACID SOILS; DEPRESSIONAL 5.8 1.63% BASINGER AND PLACID SOILS; DEPRESSIONAL 6.0 1.84% BASINGER FINE SAND 1.2 0.35% BASINGER FINE SAND 11.4 3.53% FLORIDANA;RIVERIAAND PLACID SOILS; DEPRESSIONAL 11.2 3.18% IMMOKALEE FINE SAND 296.2 91.42% IMMOKALEE FINE SAND 234.9 66.53% MYAKKA FINE SAND 18.6 5.74% PARKWOOD FINE SAND 54.2 15.37% 21 TOTAL ACRES: 105 VALKARIA FINE SAND 7.7 2.19% BASINGER FINE SAND 0.0 0.02% WATER 28.9 8.19% IMMOKALEE FINE SAND 32.5 30.95% 31 TOTAL ACRES: 72 MYAKKA FINE SAND 76.1 72.52% BASINGER FINE SAND 3.9 5.45% FLORIDANA; RIVERIAAND PLACID SOILS; DEPRESSIONAL 53.7 74.56% IMMOKALEE FINE SAND 0.4 0.57% PARKWOOD FINE SAND 11.3 15.63% • TABLE 4 LAND USE BY BASIN OKEECHOBEE SOUTHWEST CORRIDOR,OKEECHOBEE CO.,FL SUB BASIN LAND USE ACRES PCT SUB BASIN LAND USE ACRES PCT SUB BASIIJ LAND USE ACRES PCT SUB BASIN LAND USE ACRES PCT SUB BASIN LAND USE ACRES PCT 11 TOTAL ACRES: 326 14 TOTAL ACRES: 203 18 TOTALACRES: 332 21 TOTAL ACRES: 105 24 TOTALACRES: 97 CHURCHES 13.7 4.19% CHURCHES 10.5 5,19% COMMUNITY 40.0 12.05% CONV STORE 2.2 2.08% CONDOMINIA 0.0 0.03% CONV STORE 0.7 0.22% CONV STORE 1.2 0.68% CONV STORE 2.9 0.86% COUNTY 3.7 3.55% GROVE W/S 16.1 16.56% COUNTY 1.0 0.30% COUNTY 1.5 0.73% FINANCIAL 1.8 0.54% MH/RV PRK 0.4 0.37% IMP PASTUR 63.3 65.28% MOBILE HOM 0.3 0.10% FINANCIAL 0.8 0.37% HOTELS/MOT 6.4 1.94% MOBILE HOM 12.5 11.94% SINGLE FAM 12.3 12.67% MULTI-FAM 1.1 0.34% IMP PASTUR 11.9 5.86% IMP PASTUR 129.8 39.09% OFFICE BLD 1.3 1.21% 25A TOTAL ACRES: 367 MUNICIPAL 0.1 0.02% MH PARK 0.3 0.53% MISC AG SF 9.7 2.91% OPEN STORA 1.0 0.98% CROP III 20.0 5.44 MXD RES/OF 1.3 0.40% MOBILE HOM 0.4 0,21% MULTI-FAM 2.5 0.75% PK/LT RVMH 8.6 8.15% IMP PASTUR 71.5 19.48% NAT PASTUR 62.0 19.02% MULTI-FAM 0.1 0.07% NIGHTCLUB/ 1.1 0.33% SINGLE FAM 20.6 19.66% MISC AG 260.2 70.89% NON AG ACR 19.1 5.85% MUNICIPAL 0.6 0.30% NON AG ACR 9.1 2.75% STATE 2.0 1.95% 258 TOTAL ACRES: 28 CILIA 0.0 0.00% MXD RES/OF 2.2 1.09% 0 U A 9.6 2.89% STORES/1 S 0.1 0.11% NON AG ACR 6.5 23.11% OFFICE BLD 2.2 0.66% NIGHTCLUB/ 0.3 0.16% OFFICE BLD 5.7 1.71% VACANT 11.8 11.27% SINGLE FAM 5.2 18.44% PRVT SCHL/ 2.4 0.72% NON-PROFIT 1.0 0.51% PK/LT RVMH 38.6 11.64% VACANT IND 7.9 7.52% VACANT 19.0 67.92% RIGHTS-OF- 0.3 0.09% OFFICE BLD 3.4 1.67% PROFESS OF 2.0 0.60% VEH SALE/R 8.7 8.32% 26 TOTAL ACRES: 233 SERVICE ST 0.3 0.09% PROFESS OF 0.8 0.38% RESTAURANT 5.2 1.57% 22 TOTALACRES: 320 IMP PASTUR 149.8 64.28% SINGLE FAM 96.1 29.47% PRVT SCHU 0.6 028% SINGLE FAM 13.3 3.99% CHURCHES 1.5 0.46% MISC AG 0.8 0.33% STATE 0.6 0.18% PUBLIC SCH 23.9 11.77% STORES/1 S 6.0 1.80% CONV STORE 1.0 0.31% NON AG ACR 1.0 0.43% STORES/1 S 6.9 2.10% REPAIR SER 2.9 1.41% VACANT 26.4 7.95% COUNTY 0.3 0.11% VACANT 81.1 34.79% VACANT 39.3 12.05% RESTAURANT 0.9 0.44% VACANT COM 7.7 2.31% IMP PASTUR 69.7 21.78% 27 TOTAL ACRES: 246 VACANT COM 1.3 0.40% SINGLE FAM 88.3 43.51% VEH SALE/R 3.0 0.91% MOBILE HOM 16.9 5.27% IMP PASTUR 81.5 33.13% VEH SALE/R 0.9 0.27% STORE/FLEA 0.2 0.08% WAREHOSE/D 2.3 0.68% MULTI-FAM 1.9 0.60% MOBILE HOM 8.1 3.31% WAREHOSE/D 1.3 0.41% STORES/1 S 1.0 0.49% 19 TOTAL ACRES: 85 MXD RES/OF 0.7 0.23% NON AG ACR 46.6 18.94% 12 TOTALACRES: 274 THEATER/AU 2.1 1.02% MOBILE HOM 24.0 28.23% NON AG ACR 21.4 6.67% SINGLE FAM 83.0 33.72% BEAUTY PAR 0.5 0.18% VACANT 6.8 3.35% NON AG ACR 4.7 5.48% OFFICE BLD 0.5 0.15% VACANT 13.5 5.47% CHURCHES 15.6 5.70% VACANT COM 2.9 1.45% O U A 65.5 77.11% OPEN STORA 2.0 0.63% 28 TOTALACRES: 303 COMMUNITY 0.8 0.31% VEH SALE/R 0.4 0.17% OFFICE BLD 7.3 8.58% PK/LT RVMH 1.8 0.55% IMP PASTUR 166.2 54.84% CONV STORE 1.8 0.66% 15 TOTAL ACRES: 78 SINGLE FAM 9.6 11,35% RESTAURANT 0.7 0.22% MOBILE HOM 0.6 0.19% COUNTY 0.8 0.31% IMP PASTUR 72.8 93.29% STORES/1 S 2.4 2.82% SINGLE FAM 145.4 45.45% NON AG ACR 9.8 3.24% INSURANCE 0.3 0.12% SINGLE FAM 2.2 2.83% 20 TOTALACRES: 324 STORES/1 S 2.0 0.63% SINGLE FAM 80.8 26.65% • MULTI-FAM 6.1 2.21% 16 TOTAL ACRES: 66 BEAUTYPAR 0.3 0.11% VACANT 18.2 5.69% VACANT 21.4 7.07% MUNICIPAL 0.1 0.02% CHURCHES 33.3 50.52% CENTRALLY 12.9 3.97% VACANT COM 0.3 0.09% VACANT COM 3.2 1.05% MXD RES/OF 3.8 1.40% FINANCIAL 1.0 1.52% CHURCHES 6.5 2.01% VEH SALE/R 0.3 0.11% WATER MG D 5.8 1.92% OUA 0.7 0.24% HOTELS/MOT 4.4 6.59% CLUBS/LODG 0.4 0.13% WAREHOSE/D 1.7 0,54% 29 TOTALACRES: 331 OFFCE BLD 0.9 0.33% MXD RES/OF 0.4 0.66% CONV STORE 0.3 0.11% 23 TOTAL ACRES: 301 IMP PASTUR 313.9 94.82% OFFICE BLD 6.9 2.52% OFFICE BLD 1.4 2.17% COUNTY 31.7 9.79% CHURCHES 6.3 2.09% WATER MG D 26.2 7.91% OPEN STORA 0.4 0.16% PROFESS OF 3.5 5.28% FINANCIAL 2.2 0.67% CLUBS/LODG 0.3 0.10% 30 TOTAL ACRES: 353 PK/LT RVMH 0.7 0.25% STORES/1 S 3.1 4.74% HOTELS/MOT 1.6 0.51% CONDOMINIA 7.6 2.54% IMP PASTUR 169.2 47.94% PROFESS OF 1.0 0.37% VACANT COM 7.2 10.97% MULTI-FAM 6.0 1.86% IMP PASTUR 57.2 19.02% MINING 36.9 10.47% PRVT SCHU 2.3 0.83% VEH SALE/R 4.0 6.10% MUNICIPAL 3.1 0.97% MOBILE HOM 4.8 1.59% MISC AG SF 7.0 2.00% PUBLIC SCH 24.6 8.99% WAREHOSE/D 2.3 3.42% MXD RES/OF 1.5 0.47% NON AG ACR 66.8 22.18% MOBILE HOM 0.5 0.13% REPAIR SER 1.8 0.67% 17A TOTAL ACRES: 65 OFFCE BLD 11.2 3.46% 0 U A 0.0 0.01% NON AG ACR 7.5 2.13% RESTAURANT 3.8 1.37% MOBILE HOM 8.9 13.68% OPEN STORA 2.1 0.65% SINGLE FAM 122.0 40.52% SINGLE FAM 120.0 34.00% SINGLE FAM 78.8 28.76% NON AG ACR 57.7 08.74% PK/LT RVMH 0.7 0.20% VACANT 12.8 4.27% VACANT 37.3 10.56% STORES/1 S 8.8 3.20% SINGLE FAM 0.5 0.71% PROFESS OF 2.2 0.66% 31 TOTAL ACRES: 72 SUPERMARKE 2.0 0.73% VACANT 1.3 1.94% PRVT SCHU 0.8 0.26% IMP PASTUR 5.0 7.01% VACANT 14.2 5.18% 17B TOTAL ACRES: 53 REPAIR SER 0.8 0.25% VACANT COM 5.5 2.02% CONDOMINIA 13.3 25.07% RESTAURANT 2.7 0.83% VEH SALE/R 1.2 0.42% IMP PASTUR 14.0 26.41% SERVICE ST 0.3 0.10% WAREHOSE/D 1.1 0.41% MOBILE HOM 20.2 38.07% SINGLE FAM 53.6 16.55% 13 TOTALACRES: 243 NON AG ACR 9.9 18.77% STORES/1 S 9.3 2.87% COUNTY 39.2 16.13% SINGLE FAM 14.6 27.58% UTILITIES 2.1 0.64% GROVES,ORC 149.6 61.57% VAC INSTIT 10.0 18.94% VACANT 27.1 8.35% IMP PASTUR 10.0 4.12% VACANT 0.5 1,00% VACANT COM 4.9 1.52% MXD RES/OF 0.1 0.06% 17C TOTAL ACRES: 142 VACANT IND 19.7 6.08% PK/LT RVMH 0.8 0.35% CONDOMINIA 11.7 8.27% VEH SALE/R 6.7 2.06% SINGLE FAM 34.2 14.08% MOBILE HOM 78.5 55.27% WAREHOSE/D 8.6 2.67% VACANT 6.4 2.65% O U A 0.1 0.09% SINGLE FAM 25.0 17.64% VACANT 10.9 7.69% •